Example 45. Coefficient of variation of two Solution:

$$
\text { Coefficient of Variation (C.V.) }=\frac{\sigma}{\bar{x}} \times 100
$$

$$
\bar{x}=\frac{\sigma}{C . V .} \times 100
$$

$$
\text { Mean of the first series }=\frac{21.2}{58} \times 100=36.55
$$

$$
\text { Mean of the second series }=\frac{15.6}{69} \times 100=22.61
$$

Ans. Mean of first series $=36.55$; Mean of second series $=22.6$
Example 46. Calculate the standard deviation if coefficient of variation is 23.21 , number of items is 110 and mean is 21 .

Solution:

$$
\text { Coefficient of Variation (C.V.) }=\frac{\sigma}{\bar{x}} \times 100
$$

$$
23.21=\frac{\sigma}{21} \times 100
$$

$$
\sigma=\frac{23.21 \times 21}{100}=4.874
$$

Ans. Standard deviation ($\sigma=4.874$)
Exainple 47. Particulars regarding the income of two villages are given below:

		Village X	Village Y
Number of People	500	600	
Average Income	\bar{X}	$₹ 186$	$₹ 175$
Standard Deviation		9	10

(i) What is the average income of the village X and Y taken together?
(iii) Which village has a larger income?
(iii) In which village, variation in income is greater?

Solution:
(i) Average income of the village X and Y taken together (Combined Mean)

Combined Mean ($\bar{X}_{X, Y}$) $=\frac{N_{X} \bar{X}_{X}+N_{Y} \bar{X}_{Y}}{N_{X}+N_{Y}}$
$\bar{X}_{X}=186, \bar{X}_{Y}=175, N_{X}=500, N_{Y}=600$

$$
\left(\bar{X}_{X, Y}\right)=\frac{(500 \times 186)+(600 \times 175)}{500+600}=\frac{1,98,000}{1,100}=₹ 180
$$

(ii) Income of village $X=500 \times 186=₹ 93,000$
come village $\mathrm{Y}=600 \times 175=₹ 1,05,000$
Thus, Village Y has a larger income.
(iii) Coefficient of Variation of Village $X($ C.V. x$)=\frac{\sigma}{\overline{\mathrm{X}}_{\mathrm{x}}} \times 100=\frac{9}{186} \times 100=4.84 \%$

Coefficient of Variation of Village $Y(C . V . Y)=\frac{\sigma}{\bar{X}_{y}} \times 100=\frac{10}{175} \times 100=5.71 \%$
There is more variability in Village Y . X and Y taken together $=₹ 180$;
Ans. (i) Average income of the village
(ii) Village Y has a larger income;
(iii) In village Y , variation in income is greater

Example 48. For a group of 200 candidates, the mean and standard deviation were found to be 40 and 15. Later on it was discovered that the score 43 was misread as 53 . Find the correct mean and standard deviations corresponding to the corrected figure.

Solution:
Calculation of Correct Mean
$\bar{X}=\frac{\Sigma X}{N}$
Or, $\Sigma X=\bar{X} N$
$\bar{X}=40 ; N=200$
$\Sigma X=40 \times 200=8,000$
But 8,000 is a wrong value as one score was misread as 53 instead of 43 Correct $\Sigma X=8,000$ - incorrect item + correct item $=8,000-53+43=7,990$
Correct $\bar{X}=\frac{\Sigma X}{N}=\frac{7,990}{200}=39.95$
Calculation of Correct Standard deviation

$$
\begin{aligned}
\sigma & =\sqrt{\frac{\Sigma X^{2}}{N}-(\bar{X})^{2}} \\
15 & =\sqrt{\frac{\Sigma X^{2}}{200}-(40)^{2}} \\
15 & =\sqrt{\frac{\Sigma X^{2}}{200}-1,600}
\end{aligned}
$$

Squaring both the sides

$$
\Sigma X^{2}-1,600
$$

$$
225=\frac{2 \pi}{200}
$$

$$
25 \times 200=\Sigma X^{2}-1,600 \times 200
$$

$$
\begin{aligned}
& 225 \times 200=20 \\
& \Sigma X^{2}=3,20,000+45,000=3,65,000 \\
& \text { is is incorrect value }
\end{aligned}
$$

$$
\sum X^{2}=3,20,000 \text {, is incorrect value }
$$

$$
\text { 3ut, it is incorrect } \Sigma X^{2}=\text { Incorrect } \Sigma X^{2}-(\text { Incorrect items })^{2}+(\text { Correct items })^{2}
$$

$$
\text { correct } \sigma=\sqrt{\frac{\text { Correct } \Sigma X^{2}}{N}-(\text { Correct } \bar{X})^{2}}
$$

$$
\operatorname{correct}(\sigma)=\sqrt{\frac{3,64,040}{200}-(39.95)^{2}}=\sqrt{1,820.2-1,596}=\sqrt{224.2}=14.97
$$

Ans. Correct Mean $=39.95$ marks; Correct Standard Deviation $=14.97$ marks
mple 49. Calculate variance and coefficient of variation from the following data:

Exanple 49. Calculate variance and coefficient of variation from the following data:
Values

Frequency

Solution:					
Values (X)	Frequency (f)	$f X$	$x=X-\bar{X}$	x^{2}	$f x^{2}$
2	4	8	-4	16	64
6	8	48	0	0	0
10	2	20	+4	16	32
14	1	14	+8	64	64
	$\mathbf{N}=\mathbf{\Sigma f = 1 5}$	$\Sigma \mathbf{\Sigma f}=90$			$\Sigma \mathbf{~} \mathbf{x}=\mathbf{1 6 0}$

Arithmetic Mean $(\bar{X})=\frac{\Sigma f X}{\Sigma f}=\frac{90}{15}=6$
$(\sigma)=\sqrt{\frac{\Sigma x^{2}}{N}}=\sqrt{\frac{160}{15}}=3.2659$
Variance $=\sigma^{2}=(3.2659)^{2}=10.66$
Coefficient of Variation $=\frac{\sigma}{\bar{X}} \times 100=\frac{3.2659}{6} \times 100=54.43 \%$
Ans. Variance $=10.66$; Coefficient of Variation $=54.43 \%$
些解ple 50. For the following data, calculate: (i) Standard Deviation; (ii) Variance;
(iii) Coefficient of Standard Deviation; (iv) Coefficient of Variation.

Class	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$
Frequency	4	5	6	2	3

ution:
This is a case of inclusive class-intervals. So, it has to be converted into exclusive series.

Marks (X)	No. of students (f)	Mid-point (m)	$\begin{aligned} & d=m-A \\ & (A=24.5) \end{aligned}$	$\begin{gathered} d^{\prime}=\frac{m-A}{C} \\ C=10 \end{gathered}$	$f d^{\prime}$	$d^{\prime 2}$
9.5-19.5	4	14.5	-10	-1	-4	1
19.5-29.5	5	24.5 (A)	0	0	0	0
29.5-39.5	6	34.5	+10	+1	$+6$	0
39.5-49.5	2	44.5	+20	+2	+ 4	4
49.5-59.5	3	54.5	+ 30	+3	+9	9
	$\mathrm{N}=\Sigma \mathrm{f}=\mathbf{2 0}$				$\Sigma \mathrm{fd}^{\prime}=15$	

(i) Standard deviation (σ) $=\sqrt{\frac{\Sigma \mathrm{fd}^{\prime 2}}{\mathrm{~N}}-\left(\frac{\Sigma \mathrm{fd}^{\prime}}{\mathrm{N}}\right)^{2}} \times \mathrm{C}$

$$
\Sigma f d^{\prime 2}=45 ; N=20 ; \Sigma f d^{\prime}=15 ; C=10
$$

$$
\sigma=\sqrt{\frac{45}{20}-\left(\frac{15}{20}\right)^{2}} \times 10=\sqrt{2.25-.5625} \times 10=\sqrt{1.6875} \times 10=12.99
$$

(ii) Variance $=\sigma^{2}=(12.99)^{2}=168.74$
(iii) We know: Coefficient of Standard Deviation $=\frac{\sigma}{\bar{X}}$

$$
\operatorname{Mean}(\bar{X})=A+\frac{\Sigma f^{\prime}}{\Sigma f} \times C=24.5+\frac{15}{20} \times 10=32
$$

Coefficient of Standard Deviation $=\frac{12.99}{32}=0.406$
(iv) Coefficient of Variation (C.V.) $=\frac{\sigma}{\bar{X}} \times 100=\frac{12.99}{32} \times 100=40.6 \%$

Ans. (i) Standard Deviation $=1299$; (ii)
(iv) Coefficient of Variation $=40.6 \%$; (ii) Variance $=168.74$; (iii) Coefficient of Standard Deviation $=0.406$; Example 51. From the following

Age Group (years)	No. of Persons		
	Group A		
$0-10$	5	Group B	
$10-20$	15	7	
$20-30$	20	12	
$30-40$	25	22	
$40-50$	18	30	
$50-60$	10	20	
$60-70$	7	5	
		4	

golution.
in order to find which group is more uniform, we shall have to compare the coefficient of variation (C.V.) of
ine two groups. the two groups.

Calculation of Coefficient of Variation (Group A)

Age Group (X)	No. of persons (f)	Mid-points (m)	$\begin{aligned} & d=m-A \\ & (A=25) \end{aligned}$	Variat	fd	d^{2}	$f 0^{2}$
				$\begin{gathered} d^{\prime}=\frac{m-A}{C} \\ C=10 \end{gathered}$			
0-10	5	5	-20	-2			
10-20	15	15	-10	-1	-10	4	20
20-30	20	25 (A)	0	-1	-15	1	15
30-40	25	35	+ 10	+1	0	0	0
40-50	18	45	+20	+ 1	+25	1	25
50-60	10	55	+	+2	+36	4	72
60-70			+	+ 3	+ 30	9	90
60-70	7	65	+ 40	+4	+28	16	112
	$\mathbf{N}=\mathbf{\Sigma} \mathbf{f}=\mathbf{1 0 0}$				$\mathbf{\Sigma f d}{ }^{\prime}=94$		$\Sigma \mathrm{Ff}^{\prime 2}=334$

To calculate coefficient of variation, we will first calculate standard deviation and arithmetic mean.
$\sigma=\sqrt{\frac{\sum \mathrm{fd}^{\prime 2}}{N}-\left(\frac{\Sigma \mathrm{fd}^{\prime}}{\mathrm{N}}\right)^{2}} \times \mathrm{C}=\sqrt{\frac{334}{100}-\left(\frac{94}{100}\right)^{2}} \times 10$
$\sigma=\sqrt{3.34-0.883} \times 10=15.67$
Mean $(\bar{X})=A+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma f} \times C=25+\frac{94}{100} \times 10=34.4$
Coefficients of Variation (C.V.) $=\frac{\sigma}{\bar{X}} \times 100=\frac{15.67}{34.4} \times 100=45.55 \%$
Calculation of Coefficient of Variation (Group B)

Age Group (X)	No. of persons (f)	Mid-points (m)	$\begin{gathered} d=m-A \\ (A=25) \end{gathered}$	$\begin{gathered} d^{\prime}=\frac{m-A}{C} \\ C=10 \end{gathered}$	$f 0^{\prime \prime}$	d^{2}	$f 0^{2}$
0-10	7	5	-20	-2	-14	4	28
10-20	12	15	-10	-1	-12	1	12
20-30	22	25 (A)	0	0	0	0	0
30-40	30	35	$+10$	+1	+30	1	30
40-50	20	45	$+20$	+2	$+40$	4	80
50-60	5	55	$+30$	+ 3	$+15$	9	45
60-70	4	65	$+40$	+ 4	+16	16	64
	$N=\Sigma{ }^{4}$	65			2fd' $=75$		$\Sigma \mathrm{ff}^{\prime 2}=\mathbf{2 5 9}$

To calculate coefficient of variation, we will first calculate standard deviation and arithmetic mean
$\sigma=\sqrt{\frac{\Sigma \mathrm{fd}^{\prime 2}}{N}-\left(\frac{\Sigma \mathrm{fd}^{\prime}}{N}\right)^{2}} \times C=\sqrt{\frac{259}{100}-\left(\frac{75}{100}\right)^{2}} \times 10$
$\sigma=\sqrt{2.59-0.5625} \times 10=14.24$
Mean $(\bar{X})=A+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma f} \times C=25+\frac{75}{100} \times 10=32.5$
Coefficient of Variation (C.V.) $=\frac{\sigma}{\bar{X}} \times 100=\frac{14.24}{32.5} \times 100=43.82 \%$
Ans. Coefficient of variation of Group B (43.82\%) is less than that of Group A (45.55\%), so Group B is more uniform.

10.22 PROPERTIES OF STANDARD DEVIATION

1. The sum of the square of the deviations of the items from their arithmetic mean is the minimum. The sum is less than the sum of the square of the deviations of the items from any other value.

It is made clear with the following illustration:

X	$X-\bar{X}$ $\bar{X}=7$	$(X-\bar{X})^{2}$	$X-8$	$(X-8)^{2}$
3	-4	16	-5	25
5	-2	4	-3	9
8	+1	1	0	0
12	+5	25	+4	16

It is clear from the above example that sum of the squares of deviations from mean (46) is less than the sum of squares of deviations (50) taken from assumed mean.
2. Standard deviation is independent of change of origin, i.e. value of standard deviation remains the same if in a series, a constant is added (or subtracted) to all observations.
3. Standard deviation is affected by change of scale, i.e. if all the observations are multiplied or divided by a constant, then the standard deviation also gets multiplied (or divided) by this constant.
4. Standard deviation of the combined series: Like the arithmetic mean, it is possible to compute combined standard deviations of two or more groups.

$$
\text { [Combined Standard Deviation is discussed in detail in Section } 10.23 \text {] }
$$

5. For a given set of observations, standard deviation is never less than mean deviationtrill mean, i.e., Standard Deviation > Mean Deviation from mean.

COMBINED STANDARD DEVIATION

as we can calculate mean of two or more than two series, we can also compute comber
tandard deviation of two or more than two series. The formula in case of two series: combined

$$
\sigma_{1,2}=\sqrt{\frac{N_{1} \sigma_{1}^{2}+N_{2} \sigma_{2}^{2}+N_{1} d_{1}^{2}+N_{2} d_{2}^{2}}{N_{1}+N_{2}}}
$$

Where
$\sigma_{1,2}=$ Combined standard deviation of two groups
$\sigma_{1}=$ Standard deviation of first group
$\sigma_{2}=$ Standard deviation of second group
$\mathrm{d}_{1}^{2}=\left(\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{1}, 2\right)^{2}$
$\mathrm{d}_{2}^{2}=\left(\overline{\mathrm{X}}_{2}-\overline{\mathrm{x}}_{1},\right)^{2}$
$\bar{X}_{1,2}=$ Combined arithmetic mean of two groups
$\bar{X}_{1}=$ Arithmetic mean of first group
$\bar{X}_{2}=$ Arithmetic mean of second group
$N_{1}=$ Number of observations of first group
$\mathrm{N}_{2}=$ Number of observations of second group
This formula can be extended upto N number of series. If there are three series, then the combined standard deviation is:

$$
\sigma_{1,2,3}=\sqrt{\frac{N_{1} \sigma_{1}^{2}+N_{2} \sigma_{2}^{2}+N_{3} \sigma_{3}^{2}+N_{1} d_{1}^{2}+N_{2} d_{2}^{2}+N_{3} d_{3}^{2}}{N_{1}+N_{2}+N_{3}}}
$$

Where,

$$
\begin{aligned}
& d_{1}^{2}=\left(\bar{X}_{1}-\bar{X}_{1,2,3}\right)^{2}, d_{2}^{2}=\left(\bar{X}_{2}-\bar{X}_{1,2,3}\right)^{2} \text {, and } d_{3}^{2}=\left(\bar{X}_{3}-\bar{X}_{1,2,3}\right)^{2} \\
& \text { The concept of combined mean will be more clear from the following examples. }
\end{aligned}
$$

Example 52. Find the combined standard deviation from the following data:

Example 52. Find the combined standard deviation from the	Boys	Girls
	30	20
Number	20	30
Mean	4	5
Standard deviation		

Solution:

- will have to first calculate combined mean:

$$
\begin{aligned}
& \text { Combined Mean }\left(\bar{X}_{1,2}\right)=\frac{N_{1} \bar{X}_{1}+N_{2} \bar{X}_{2}}{N_{1}+N_{2}} \\
& \bar{X}_{1}=20, \bar{X}_{2}=30, N_{1}=30, N_{2}=20
\end{aligned}
$$

