QUANTITATIVE TECHNIQUES FOR MANAGERIAL DECISION - 1 (QTMD1G21-1)

PROBLEM 5.21, TEXTBOOK PG. 213

Suppose in an apartment complex consisting of 45 families, the total drinking water usage for a day was 1350 lit. If the water usage per family is distributed according to normal distribution with a standard deviation 5 lit,

 $X \sim N(\mu \sigma^2)$ $\sigma = 5$, $\mu = E(X) = \frac{1350}{45} = 30$. a) what percentage of families used more than 35 lit of water? X = Water usage $P(X > 35) = P(\frac{X-30}{5} > \frac{35-30}{5}) = P(Z > 1)$ $= 1 - P(Z \leq 1)$ = 1 - pnorm(1)_ 0-1586553 $\rightarrow 15.867_{0}$ 20-07-2021 2

, -, 735

PROBLEM 5.21, TEXTBOOK PG. 213

Suppose in an apartment complex consisting of 45 families, the total drinking water usage for a day was 1350 lit. If the water usage per family is distributed according to normal distribution with a standard deviation 5 lit,

Y = # of families using ware than 35 litY = # of families using ware than 35 lit $Y \sim Bin(n,b), n = 45, p = 0.1587$ $Y (1 = 5) = (45) (0.1587)^5 (1 - 0.1587)^40$ = d pinom (5,45,0.1587)= 0.122435= 0.122435b) what is the probability that exactly 5 families used more than 35 lit of water?

 $Z = \frac{X}{2}$

PROBLEM

A food processor packages instant coffee in small jars. The weights of the jars are normally distributed with a standard deviation of 3 grams.

If 5% of the jars weigh more than 124.92 grams, then what is the mean weight of the jars?

Note:
$$\Phi(1.645) = 0.95$$
.

$$X = Weights \quad of jorso$$

$$X \approx N(M, 3^{2})$$

$$P(X \leq 124.92) = 0.95$$

$$P(X \leq 124.92) = 0.95$$

$$P(X \leq 124.92-M) = 0.95$$

$$P(Z \leq \frac{124.92-M}{3}) = 0.95$$

$$P(Z \leq \frac{124.92-M}{3}) = 0.95$$

$$P(Z \leq \frac{124.92-M}{3}) = 0.95$$

 $(124-92-M) = \oplus (1.645)$ 70-95 $\frac{124.27}{3} = 1.645$ = 1.645 = M = 119.985 $Z = q_1 n_0 r_1 m_1 (0.95)$ = 1.645 = 1.645

STOCHASTIC PROCESSES

STOCHASTIC PROCESSES

A stochastic process is a sequence of random variables, finite or infinite, usually denoted X_1 , X_2 , ... (Or sometimes X_0 , X_1 , X_2 , ...)

Examples:

1. Starting at some point of time, X_i is the amount withdrawn at an ATM in the campus by the ith visitor.

2. Starting at some day, X_i is the daily closing price of a stock at the end of the ith day

3. Starting at some point of time, X_i is the number of days (hours?) between the (i-1)th and ith fatal accident in Jamshedpur

In short, any list of variables in a sequence, usually recorded in order of time or space.

THE SIMPLEST STOCHASTIC PROCESS

Simplest possible structure: All X_i s are independent of each other, and have the same structure/distribution.

→Independent and Identically Distributed variables (IID) Examples:

- 1. The ATM withdrawals. $X_i =$ amount withdrawn by the ith individual
- 2. Number of tails between consecutive heads in a long sequence of coin tosses, where $X_i =$ number of tails between (i-1)th and ith head
- 3. No. of errors in each page of a book, where $X_i =$ number of errors in Page i

SAMPLE MEAN

For a simple random sample $X_1, X_2, ..., X_n$ from some population, the sample mean is given

 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{X_i + X_2 + \dots + X_n}{N} \rightarrow average \quad of random variables}$ (T. V.)

Note: X₁, X₂, ..., X_n are independent and identically distributed (IID) when chosen with replacement. This is the case we'll restrict to from now on.

by

E(aX) = a E(X)E(X, N(X) E(x+y) = E(x)+E(1) $V(aX) = a^2 V(X)$ ON AND VARIANCE OF SAMPLE MEAN EXPECTA $E(X_1) = E(X_2) = \dots = E(X_n) = \mathcal{M} \text{ (identical)}$ $V(X_1) = V(X_2) = \dots = V(X_n) = \sigma^2 (n)$ $\chi_{11}\chi_{21},\ldots,\chi_{n}$: IID $V_{aa}(\bar{x}) = V(\frac{1}{n}(x_1 + x_2 + \dots + x_n))$ = $\frac{1}{n^2} V(x_1 + \dots + x_n)$ = $\frac{1}{n^2} [V(x_1) + V(x_2) + \dots + V(x_n),$ = $\frac{1}{n^2} [V(x_1) + V(x_2) + \dots + V(x_n),$ $E(\overline{x}) = E\left(\frac{1}{n}(x_1 + x_2 + \dots + x_n)\right)$ $= \frac{1}{n} \frac{E(X_1 + X_2 + \dots + X_n)}{[E(X_1) + E(X_2) + \dots + E(X_n)]}$ = $\frac{1}{n} \frac{E(X_1) + E(X_2) + \dots + E(X_n)}{[E(X_1) + E(X_2) + \dots + E(X_n)]}$ (nO^{2}) $=\frac{1}{n}(nn)=n$ 11 20-07-2021

 $X_{1}, X_{2}, \dots, X_{20} \rightarrow III$

N (296,82)-> Ind

DISTRIBUTION OF SAMPLE MEAN

The distribution of X is given by the probability distribution of the values X can take.

Example: The quantity of soft drinks put in a soft drink bottle is supposed to be 300ml, but suppose actually it follows a normal distribution with mean 296 ml and sd 8 ml. What is the probability that randomly chosen 20 bottles Xi = Content of ithbottle : X20 NN (296,82) contain 300ml or more on average? $X_1 \sim N(296, 8^2)$ $X_2 \sim N(296, 8^2)$

For this, we need to answer:

What is the distribution of the average quantity in 20 randomly chosen bottles?

12

>P(x >300)= $E(\bar{x}) = \mu = 296, V(\bar{x}) = \frac{8}{20} = \frac{6}{20}$

for any Irne $X_{1}, X_{2}, \dots, X_{n} \sim IID$ $\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ $E(\bar{x}) = M$ $V(\overline{x}) = \frac{d^2}{d^2}$

 (ax^{1}) $X_{1}, X_{2}, \dots, X_{n} \sim IID N(M, \Gamma^{2})$

 $X_{1}, X_{2}, \dots, X_{20} \sim IID N(296, \frac{8^{2}}{20}) \qquad pnorm(X_{1}) \\ P(X > 300) = I - P(X \leq 300) \\ = I - pnorm(300, 296, sqnt(64/20)) \\ = I - pnorm(300, 296, sqnt(74/20)) \\ = I - pnorm(300, 296, sqnt(74/20)) \\ = I - pnorm(300, 296, sqnt(74/20)) \\ = I - pnorm(74/20) \\ = I - pno$ Problem

WHAT IF THE RANDOM VARIABLES ARE NOT NORMAL?

Sample Mean in General Case:

Consider a sequence of n independent and identically distributed (IID) random variables: $X_1, X_2, ..., X_n$

Let all of them be IID with mean μ and variance σ^2 . (But not necessarily normal.)

Then
$$E(\overline{X}) = \mu$$
, $V(\overline{X}) = \frac{\sigma^2}{n}$

But how is \overline{X} "distributed"?

DISTRIBUTION OF SAMPLE MEAN IN GENERAL CASE

There are three lunch specials in a restaurant: A, B and C, which cost Rs.100, Rs. 140 and Rs. 150 respectively. A student, who lunches in that restaurant every day, chooses these three specials with probabilities 60%, 20% and 20% respectively. He chooses one lunch special every day independently of his previous decisions.

a) Obtain the distribution of the student's daily expenditure on lunch.

X = Daily expenditure X 100 140 150 =n) 0.6 0.2 0.2

DISTRIBUTION OF SAMPLE MEAN IN GENERAL CASE

There are three lunch specials in a restaurant: A, B and C, which cost Rs.100, Rs. 140 and Rs. 150 respectively. A student, who lunches in that restaurant every day, chooses these three specials with probabilities 60%, 20% and 20% respectively. He chooses one lunch special every day independently of his previous decisions.

b) Obtain the distribution of the student's average expenditure on lunch over two days.

	(100,100)	(100,140) (140,100)	(100,150) (150,100) 125	(140,140) (((140,150), (150,140) 145	(150,150) 150
$\sum_{x=a}^{n}$	0.6×0.6	$0.6 \times 0.2 \times 2$ $= 0.24$	0.6×0.2×2 = 0-24	0-04	0-08	0-04

DISTRIBUTION OF SAMPLE MEAN IN GENERAL CASE

There are three lunch specials in a restaurant: A, B and C, which cost Rs.100, Rs. 140 and Rs. 150 respectively. A student, who lunches in that restaurant every day, chooses these three specials with probabilities 60%, 20% and 20% respectively. He chooses one lunch special every day independently of his previous decisions.

c) Obtain the distribution of the student's average expenditure on lunch over 30 days.

DISTRIBUTION OF \overline{X}

19

DISTRIBUTION OF \overline{X}

THE CENTRAL LIMIT THEOREM - moderate large steen

BACK TO OUR EXAMPLE

 μ and σ :

 $\mu = 118$, $\sigma^2 = 496$ (check), $\sigma = 22.27$.

Now work out the approximate distribution of the sample mean \overline{X} for n = 30 using CLT: $\overline{X} \sim N(118, 496/30) = N(118, 16.53) = N(118, 4.07^2)$ $\overline{X} \sim N(118, \frac{496}{30})$

BACK TO OUR EXAMPLE

What is the probability that over 30 days, the average spend is at least Rs.122?

 $P(\overline{X} \ge 122) = I - P(\overline{X} < 122) = I - pnonm(122, 118, 4.07)$

What is the probability that over 30 days, total spend is at least Rs. 4000?

$$\tilde{\Sigma}_{i=1}^{\infty} X_{i} \sim N(n \mu, n\sigma^{2})$$

$$P(\sum_{i=1}^{30} X_{i} > 4000) = 1 - pnorm(4000, 30 \times 118)$$

$$Sqnt(30 \times 496)$$

$$Sqnt(30 \times 496)$$

For values $x \ge 3.5$, can assume $\Phi(x) \approx 1$.

= 0.1628

 $\overline{X} \sim N(118, \frac{496}{30})$

X

ISSUES WITH THE CLT

When can we use it:

•If samples are from IID distributions

When we may not use it:

•Don't use it if the distributions are not IID.

•Errors may be large for small samples from skewed distributions

HOW GOOD ARE THE NORMAL APPROXIMATIONS?

Depends!

•Larger skew: need larger sample size

 \rightarrow No skew: even 15 is a reasonable sample size to use the normal approximation

Moderate skew: need 30 or more

 \rightarrow High skew: need 50 or more

Severe skew (Example: binomial with large n and small p so that Poisson approximation holds): might need very high sample size, in the range of several hundred or even higher