

QUANTITATIVE TECHNIQUES FOR MANAGERIAL DECISION-1 (QTMDIG2I-I)

AXIOMS OF PROBABILITY

For any event A :
i) $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$.
ii) $P(\Phi)=0$, where Φ is the null event (no outcomes) and $P(S)=1$, where S is the sample space (all outcomes).
iii) For any sequence of mutually exclusive events A_{1}, A_{2}, \ldots

$$
P\left(A_{1} \cup A_{2} U \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots
$$

Tossing a coin and throwing a die.

$$
\begin{aligned}
& S=\{(H, 1),(H, 2),(T, 1),(T, 2) \ldots \\
& \hline
\end{aligned}
$$

PROBLEM

Consider the type of clothes dryer (gas or electric) purchased by each of five different customers at a certain store.
a) If the probability that at most one of these customers purchases an electric dryer is 0.428 , what is the probability that at least two purchase an electric dryer?

$$
\begin{aligned}
& \left.G_{i} E_{5 i-} \mathcal{J}, \mathcal{S}^{\prime} G_{3} E_{2}, G_{2} E_{3}, G_{1} E_{4}, G_{0} E_{5}\right\} \\
& S=\left\{G_{5} E_{0}, G_{4},\right. \\
& A=\left\{G_{5} E_{0}, G_{4} E_{1}\right\} \quad, \quad A^{c}= \\
& P(A)=0.4288\left(A^{c}\right)=1-0.428=0.572 .
\end{aligned}
$$

PROBLEM

$$
\begin{aligned}
S & =\left\{C_{1 G}, C_{2 G}, C_{3 G} C_{4 G},\right. \\
S & =\left\{\begin{array}{l}
1_{G}, 2_{G},
\end{array}\right.
\end{aligned}
$$

Consider the type of clothes dryer (gas or electric) purchased by each of five different customers at a certain store.
b) If P (all five purchase $\overline{\text { gas }})=0.116$ and P (all five purchase electric) $=0.005$, what is the probability that at least one of each type is purchased?

$$
\begin{aligned}
& S=\left\{G_{5} E_{0}, G_{4} E_{1}, G_{3} E_{2}, G_{2} E_{3}, G_{1} E_{4}, G_{0} E_{5}\right\} \\
& B=\left\{G_{5} E_{0}\right\}, P(B)=0.116 . \quad C=\left\{G_{0} E_{5}\right\}, P(C)=0.005 \\
& 1-P(B)-P(C)=0.879 \quad S=\{(1,1),(B, \sigma)\} \\
& S=\{(i, j): 1 \leq i \leq 6,1 \leq j \leq 6\}
\end{aligned}
$$

FURTHER RESULTS

- If A and B are two mutually exclusive events such that $P(A U B)=1$ then A and B are called complements of each other. We denote B as \bar{A} or A^{C}.
- General formula for two events:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- More than two events:

$$
\begin{aligned}
P(A \cup B \cup C)=P(A)+P(B) & +P(C)-P(A \cap B)-P(B \cap C) \\
& -P(A \cap C)+P(A \cap B \cap C)
\end{aligned}
$$

PROBLEM 2.39, TEXTBOOK PG 51:

Three ants are sitting at the three corners of an equilateral triangle. Each ant starts to move randomly along an edge of the triangle. What is the probability that none of them collide with each other?

Not meet if travelling clockwise ar anticlockwise Total No of choices for moving $=2^{3} \kappa$
No. of favourable choices $=2$

$$
\begin{array}{r}
S=\left\{A_{2} A_{1 c} A_{2 A} A_{3 A},\right. \\
A_{1 c} A_{2} A_{3 A},
\end{array}
$$

$$
\cdots\}
$$

PROBLEM 2.40, TEXTBOOK PG 51:

There are 3 computers available in an internet café. If on a particular day 3 customers arrived (at non-overlapping times), what is the probability that k computers $(k=1,2,3)$ were used on that particular day?

CONDITIONAL PROBABILITY AND INDEPENDENCE

A SIMPLE PROBLEM

$$
S=\{H H, H T X T T T\}
$$

Consider families with 2 children. Assume boys and girls are equally likely.

$$
\theta_{0}
$$

CONDITIONAL PROBABILITY

Let A, B be two events such that $P(A)>0$. Then

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

is the conditional probability of B given A.
Conditional probability given an event A is computed by restricting the sample space to A.

CONDITIONAL PROBABILITY

Conditional probability is also a probability: $\mathrm{Q}(\mathrm{B})=P(B \mid A)$
$\cdot 0 \leq Q(B) \leq 1$

- $Q(\Phi)=0, Q(A)=1$.
- The summation law holds i.e. $P\left(Q_{1} U_{2} U \ldots\right)=P\left(Q_{1}\right)+P\left(Q_{2}\right)+\ldots$ if $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots$ are disjoint inside A

PROBLEM 3.2, TEXTBOOK PG 97:

A bag contains blue and red balls. Two balls are drawn randomly without replacement.
The probability of selecting a red and then a blue ball is 0.4 . The probability of selecting a red ball in the first draw is 0.5.

What is the probability of drawing a blue ball, given that the first ball drawn was red?
Ans:

$$
\begin{aligned}
& P(B \cap R)=0.4, P(R)=0.5 \\
& P(B \mid R)=\frac{P(B \cap R)}{P(R)}=\frac{0.4}{0.5}=0.8
\end{aligned}
$$

PROBLEM
An analyst estimates that the probability of default on a seven-year AA rated bond is 0.06 , while that on a seven-year A rated bond is 0.13 . If the seven-year AA rated bond defaults, then the chances of the seven-year A rated bond defaulting is 0.67 .
a) What is the probability that both the bonds will default?

Ans:

$$
\left.\begin{array}{l}
\therefore D_{A A} \rightarrow A A \text { bond, } D_{A} \rightarrow A \text { bond, } \\
P\left(D_{A A}\right)=0.06, \quad P\left(D_{A}\right)=0.13 \\
P\left(D_{A} \mid D_{A A}\right)=0.67 \\
P\left(D_{A} \cap D_{A A}\right)=?
\end{array} \quad \Rightarrow P\left(D_{A A} \mid D_{A A}\right)=\frac{P\left(D_{A} \cap D_{A A}\right)}{P\left(D_{A A}\right)}\right)
$$

PROBLEM
An analyst estimates that the probability of default on a seven-year AA rated bond is 0.06, while that on a seven-year A rated bond is 0.13 . If the seven-year AA rated bond defaults, then the chances of the seven-year A rated bond defaulting is 0.67 .
b) What is the probability that neither the seven-year AA rated bond nor the seven-year A rated bond will default?

$$
\begin{aligned}
P\left(D_{A A}^{c} \cap D_{A}^{c}\right)= & 1-P\left(D_{A A} \cup D_{A}\right)=1-P\left(D_{A A}\right)-P\left(D_{A}\right) \\
& +P\left(D_{A A} \cap D_{A}\right) \\
= & 0.7698
\end{aligned}
$$

MULTIPLICATIVE/CHAIN RULE

$P(A \cap B)=P(A) P(B \mid A)=P(B) P(A \mid B)$

General Rule:

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \ldots P\left(A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right)
$$

SUB EVENTS AND SUPER EVENTS
A is a sub-event of B if whenever A happens, B must happen as well.
We write $A \subseteq B$ and call B a super-event of A.

$$
\begin{aligned}
& A=\{2,4,6\} \\
& B=\{23 \quad B \subseteq A
\end{aligned}
$$

What happens to $P(A \mid B)$ and $P(B \mid A)$ when A is a subevent of B ?

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)}
$$

$$
A \subseteq B
$$

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(A)}{P(A)}=1
$$

Two events A and B are called independent if

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})
$$

Idea comes from the fact that A and B are independent means

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}^{\mathrm{c}}\right)=\mathrm{P}(\mathrm{~A})
$$

or equivalently $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\mathrm{c}}\right)=\mathrm{P}(\mathrm{B})$. EVENTS

$$
\left.\begin{array}{l}
P(A \cap B)=P(A) P(B) \\
P(B \cap C)=P(B) P(C) \\
P(C \cap A)=P(C) P(A)
\end{array}\right\} \text { Painnise }
$$

INDEPENDENT EVENTS

For three events A, B and C, in addition to pairwise independence, we also need

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B} \cap \mathrm{C})=\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}^{\mathrm{c}} \cap \mathrm{C}\right)=\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B} \cap \mathrm{C}^{\mathrm{c}}\right)=\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}^{\mathrm{c}} \cap \mathrm{C}^{\mathrm{c}}\right)=\mathrm{P}(\mathrm{~A})
$$

or a similar description for B or C.
Together with pairwise independence, all of the above conditions reduce to one single additional condition:

$$
P(A \cap B \cap C)=P(A) P(B) P(C)
$$

V_{i} : Working, V_{i}^{c} : Nat working
PROBLEM
The valves in the image below develop faults and stop working independently with probability p each.
a) What is the probability that gas is flowing from A to B ?
P (Gas flows from A to B)

$$
\begin{aligned}
& P\left(V_{i}^{c}\right)=P \\
& P\left(V_{i}\right)=1-P
\end{aligned} \quad i=1,2,3
$$

$$
=P(I \cup \text { II })=P(I)+P(\text { II })-P(I \cap I I)
$$

$$
P(\text { II })=P\left(V_{3}\right)=1-p
$$

$$
P(I)=P\left(V_{2} \cap V_{2}\right)=P\left(V_{1}\right) P\left(V_{2}\right)=(1-P)^{2}
$$

$$
P(I \cap I I)=P\left(v_{1}\right) P\left(v_{2}\right) P\left(V_{3}\right)=(1-P)^{3}
$$

$P($ Yas flowing from A t $B)=(1-p)^{2}+(1-p)-(1-p)^{3}$

$$
=(1-p)\left(1+p-p^{2}\right)
$$

$G_{A B}$: leas flowing from A to B.
PROBLEM
The valves in the image below develop faults and stop working independently with probability p each.
b) Given that gas is flowing from A to B, what is the probability that V_{1} has developed a fault?

Ans:

$P\left(G_{A B}\right) \rightarrow$ we know from part (a)

$$
\begin{aligned}
P\left(V_{1}^{c} \cap G_{A B}\right) & =P\left(V_{1}^{c} \cap V_{2} \cap V_{3}\right)+P\left(V_{1}^{c} \cap V_{2}^{c} \cap V_{3}\right) \\
& =P\left(V_{1}^{c} \cap V_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
P\left(v_{1}^{c} \mid G_{A B}\right) & =\frac{P\left(V_{1}^{c} \cap G_{A B}\right)}{P\left(G_{A B}\right)}=\frac{p(1-p)}{(1-p)\left(1+p-p^{2}\right)} \\
& =\frac{p}{1+p-p^{2}}
\end{aligned}
$$

PROBLEM

The valves in the image below develop faults and stop working independently with probability p each.
c) Given that gas is not flowing from A to B, what is the probability that V_{1} has not developed a fault?

$$
\begin{aligned}
& P\left(V_{1} \mid G_{A B}^{c}\right)=\frac{P\left(V_{1} \cap G_{A B}^{c}\right)}{P\left(G_{A B}^{c}\right)} \\
& P\left(G_{A B}^{c}\right)=1-P\left(G_{A B}\right)=1-(1-p)\left(1+p-p^{2}\right)=p^{2}(2-p) \\
& P\left(V_{1} \cap G_{A B}^{c}\right)=P\left(V_{1} \cap V_{2}^{c} \cap V_{3}^{c}\right)=P\left(V_{1}\right) P\left(V_{2}^{c}\right) P\left(V_{3}^{c}\right)=p^{2}(1-p)
\end{aligned}
$$

TREE DIAGRAM

When events happen in sequence, it is often beneficial to attempt the problem using a probability tree.

I: Ind, L: Lib
C : Conservative
PROBLEM 3.18, TEXTB00K PG 98: V: Vote

A total of 46% of the voters in a certain city classify themselves as Independents, whereas 30% classify themselves as Liberals and 24% say that they are Conservatives.
In a recent local election, 35% of the Independents, 62% of the Liberals, and 58% of the Conservatives voted. A voter is chosen at random.
a) What fraction of voters participated in the local election?

$$
\begin{aligned}
P(V)= & P(V \cap I)+P(V \cap L)+P(V \cap C) \\
= & P(I) P(V \mid I)+P(L) P(V \mid L) \\
& +P(C) P(V K) \\
= & 0.4862
\end{aligned}
$$

29-06-2021

$$
\begin{aligned}
& \overrightarrow{P(V)=P(I)} \begin{aligned}
& \text { Total } P(V \mid I)+P(L) P(V \mid L) \\
&+P(C) P(V \mid C)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& P(C \mid V)=\frac{P(C) P(V \mid C)}{P(F) P(V \mid I)+P(L) P(V \mid L)}+P(C) P(V \mid C) \\
& \text { Bayes' Rule! }
\end{aligned}
$$

PROBLEM 3.18, TEXTBOOK PG 98:

A total of 46% of the voters in a certain city classify themselves as Independents, whereas 30% classify themselves as Liberals and 24% say that they are Conservatives.

In a recent local election, 35% of the Independents, 62% of the Liberals, and 58% of the Conservatives voted. A voter is chosen at random.
b) Given that this person voted in the local election, what is the probability that he or she is
a Conservative?

$$
\begin{aligned}
& \text { a Conservative? } \\
& P(C \mid V)=\frac{P(C \cap V)}{P(V)}=\frac{0.24 \times 0.58}{0.4862}=0.2863019 .10
\end{aligned}
$$

TOTAL PROBABILITY AND BAYES' THEOREM

LAW OF TOTAL PROBABILITY

Let A and B be two events such that $0<P(A)<1$. Then

$$
P(A)=P(B) P(A \mid B)+P\left(B^{c}\right) P\left(A \mid B^{c}\right)
$$

$B_{1}, B_{2}, \ldots B_{k} \rightarrow$ Mutually enchsiree and exhaustive events

$A \rightarrow$ any event

$$
P(A)=\sum_{i=1}^{n} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

JOINT AND MARGINAL PROBABILITY

The probability of two or more events occurring together or in succession is called the joint probability.

Marginal probability is the probability of the occurrence of the single event.

FALSE POSITIVE

Suppose that a laboratory test on a blood sample yields one of two results, positive or negative.

It is found that 95% of people with a particular disease produce a positive result.

But 2% of the people without the disease will also produce a positive result (a false positive).

Suppose that 1% of the population actually has the disease.

What is the probability that a person chosen at random from the population would have the disease, given that the person's blood yields a positive result?

D: Person has disease
FALSE POSITIVE
Suppose that a laboratory test on a blood sample yields one of two results, positive or negative.
It is found that 95% of people with a particular disease produce a positive result.

But 2% of the people without the disease will also produce a positive result (a false positive).

Suppose that 1% of the population actually has the disease.

What is the probability that a person chosen at random from the population would have the disease, given that the person's blood yields a positive result?

A: Test gives the result.

$$
\begin{aligned}
P(D \mid A) & =\frac{P(D \cap A)}{P(A)} \\
& =\frac{P(D) P(A \mid D)}{P(D) P(A \mid D)+P\left(D^{C}\right) P(A \mid D C)}
\end{aligned}
$$

$$
=0.324
$$

FALSE POSITIVE

Suppose that a laboratory test on a blood sample yields one of two results, positive or negative.
It is found that 95% of people with a particular disease produce a positive result.

But 2% of the people without the disease will also produce a positive result (a false positive).
Suppose that 1% of the population actually has the disease.

What is the probability that a person chosen at random from the population would have the disease, given that the person's blood yields a positive result?

Sensitivity: $P(A \mid D)=0.95$
Specificity: How specific positive results are to this disease

$$
=0.98
$$

SOME NOTATIONS

A partition of the sample space: $B_{1}, B_{2}, \ldots, B_{n}$ $P\left(B_{i}\right)$: "Prior Probability" of B_{i}
\rightarrow the unconditional probability of B_{i}

A: Some event
$P\left(B_{i} \mid A\right)$: "Posterior Probability" of B_{i}
\rightarrow Bayesian Update of probability of B_{i}

WE FOUND THAT

 $P(D \mid A)=0.324$The result seems counterintuitive!

BAYES' THEOREM
Let A and B be two events such that $0<P(B)<1$ and $P(A)>0$. Then

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})}{\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})+\mathrm{P}\left(\mathrm{~A} \mid B^{c}\right) \mathrm{P}\left(B^{c}\right)}=\frac{\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})}{\mathrm{P}(\mathrm{~A})}
$$

$B_{1}, B_{2}, \ldots B_{n} \rightarrow$ Mutually exclusive and exhaustive events $P\left(B_{i}\right)>0, \quad i=1,2, \ldots, k$.
Than for cent $A,(P(A)>0)$,

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{i=1}^{k} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}, j=1,2, \ldots, k
$$

contingency table

CUSTOMER SATISFACTION SURVEY FOR DIFFERENT FUNDS

An investment broker sells several kinds of investment products an equity fund, a bond fund, and a money market fund.

The broker wishes to study whether client satisfaction with its products and services depends on the type of investment product purchased.

To do this, 100 of the broker's clients are randomly selected from the population of clients who have purchased shares in exactly one of the funds.

The broker records the fund type purchased by each client and has one of its investment counselors personally contact the client.

When contacted, the client is asked to rate his or her level of satisfaction with the purchased fund as high, medium, or low.

FundType	SatisfactionRating
BOND	HIGH
Equity	HIGH
MoneyMarket	MED
MoneyMarket	MED
Equity	LOW
Equity	HIGH
Equity	HIGH
BOND	MED
MoneyMarket	LOW
MoneyMarket	LOW
Equity	MED
BOND	LOW
Equity	HIGH
MoneyMarket	MED

CUSTOMER SATISFACTION SURVEY FOR DIFFERENT FUNDS

FundType	SatisfactionRating
BOND	HIGH
Equity	HIGH
MoneyMarket	MED
MoneyMarket	MED
Equity	LOW
Equity	HIGH
Equity	HIGH
BOND	MED
MoneyMarket	LOW
MoneyMarket	LOW
Equity	MED
BOND	LOW
Equity	
MoneyMarket	

CUSTOMER SATISFACTION SURVEY FOR DIFFERENT

 FUNDS| | High | Low | Medium | Total |
| :---: | :---: | :---: | :---: | :---: |
| Bond | 15 | 3 | 12 | 30 |
| Equity | 24 | 2 | 4 | 30 |
| MoneyMarket | 1 | 15 | 24 | 40 |
| Total | 40 | 20 | 40 | 100 |,

CUSTOMER SATISFACTION SURVEY FOR DIFFERENT FUNDS

	High	Low	Medium	Total
Bond	0.15	0.03	0.12	0.30
Equity	0.24	0.02	0.04	0.30
MoneyMarket	0.01	0.15	0.24	0.40
Total	0.40	0.20	0.40	1.00

CUSTOMER SATISFACTION SURVEY FOR DIFFERENT FUNDS

PROBLEM 3.21, TEXTBOOK PG 99:

A total of 500 married working couples were polled about their annual salaries, with the following information resulting:

If one of the couples is randomly chosen, what is
(a) the probability that the husband earns less than \$25,000?

PROBLEM 3.21, TEXTBOOK PG 99:

A total of 500 married working couples were polled about their annual salaries, with the following information resulting:

Wife	Husband	
	$\begin{array}{c}\text { Less than } \\ \$ 25,000\end{array}$	$\begin{array}{c}\text { More than } \\ \$ 25,000\end{array}$
Less than $\$ 25,000$	212	198
More than $\$ 25,000$	36	$0 \cdot 108$

If one of the couples is randomly chosen, what is
(b) the conditional probability that the wife earns more than $\$ 25,000$ given that the husband earns more than this amount?

$$
\begin{aligned}
& P\left(W_{>2500} \mid H_{>25000}\right) \\
& \quad=\frac{P\left(W_{>25000} \cap H_{>25000}\right)}{P\left(H_{>25000}\right)} \\
& \quad=\frac{0.108}{0.504}=0.214
\end{aligned}
$$

PROBLEM 3.21, TEXTBOOK PG 99:

A total of 500 married working couples were polled about their annual salaries, with the following information resulting:

If one of the couples is randomly chosen, what is (c) the conditional probability that the wife earns more than $\$ 25,000$ given that the husband earns less than this amount?

$$
\begin{aligned}
P\left(W_{>25000}\right. & \left.H_{\angle 25000}\right) \\
& =\frac{\sqrt{P}\left(W_{>25000} \cap H_{\angle 25000}\right)}{P\left(H_{\angle 25000}\right)} \\
& =\frac{0.072}{0.494}=0.145
\end{aligned}
$$

ODDS OF AN EVENT

The odds in the favor of an event A is the ratio of the probability of A to the probability of A^{C} i.e.

$$
\text { Odds in favor of } A=\frac{P(A)}{P\left(A^{C}\right)}
$$

