MEASURES OF CENTRAL TENDENCY ARITHIVIETIC MIEAN

LEARNING OBJECTIVES
8.1 INTRODUCTION
8.2 MEANING
8.3 OBJECTIVE AND FUNCTIONS OF AVERAGES
8.4 REQUISITES OF A MEASURE OF CENTRAL TENDENCY
8.5 MEASURES OF CENTRAL TENDENCY
8.6 MEANING OF ARITHMETIC MEAN
8.7 INDIVIDUAL SERIES
8.8 DISCRETE SERIES
8.9 CONTINUOUS SERIES
8.10 CHARLIER'S ACCURACY CHECK
8.11 CALCULATION OF MISSING VALUE
8.12 ARITHMETIC MEAN IN SPECIAL CASES
8.13 PROPERTIES OF ARITHMETIC MEAN
8.14 COMBINED MEAN
8.15 CORRECTED MEAN
8.16 MERITS AND DEMERITS OF ARITHMETIC MEAN
8.17 WEIGHTED MEAN
8.1 INTRODUCTION

In the previous chapters, we discussed how the r
charts and frequency distributions. We also studie
representations make raw data more meaningful
${ }^{H}{ }^{\text {However, }}$ sometimes, they fail to convey a clear picture for which it is intended. Therefore, of the series need for some single measurement, which can describe the main characteristics ries. Such measures are called 'Measures of Central Tendency' or 'Average'.
5. To trace precise relationship: Average becomes essential when it is desired to establish relationships between different groups in quantitative terms.
Example: It is vague and irrelevant to say that income of an average American is more than that incomes are expressed in terms of averages.
6. Base for computing other measures: Averages offer a base for computing various other measures like dispersion, skewness, kurtosis that help in many other phases of statistical analysis.

REQUISITES OF A MEASURE OF CENTRAL TENDENCY

\qquad
A good measure of average must possess the following characteristics:

1. Rigidly defined: An average should be clear and rigid so that there is no confusion and there is one and only one interpretation.

- There should not be any chance for applying discretion.
- Preferably, it should be defined by an algebraic formula, so that the average computed from a set of data by anybody remains the same.

2. Based on all the observations: Average should be calculated by taking into consideration each and every item of the series. If it is not based on all the items, it cannot be said to be representative of the whole group.
3. It should be least affected by fluctuations of sampling: An average should possess sampling stability.

- If we take two or more independent random samples of the same size from a given population and compute the average for each, then the values so obtained from different samples should not differ much from one another.
- For example, if we select 5 different groups of college students and compute the average age of each group, then average age of the 5 groups should not materially differ from each other.

4. Capable of further Algebraic Treatment: Average should be capable of further mathematical and statistical analysis to expand its utility. For example, if separate figures of average marks and number of students of two or more classes are given, then we should be able to compute the combined average.
5. Easy to understand and calculate: The value of an average should be computed by using a simple method without reducing its accuracy and other advantages.
8.5

Mean is c ations in the set. There are 3 method observations and dividing the sum by the number Direct Method; late arithmetic mean of individual series: (i) Short-Cut Method; and (iii) Step Deviation Method.

Direct Method
and then their total is divided by the number of items and the quotient becomes the arithmetic mean.

1. Let the items (observations) be $X_{1}, X_{2}, \ldots X_{n}$.
2. Add up the values of all the items and obtain the total, i.e., ΣX.
3. Find out total number of items in the series, i.e., N.
4. Divide total value of all items (ΣX) by total number of items (N); i.e. $\bar{X}=\frac{\Sigma X}{N}$

Example 1. The marks obtained by 10 students in a subject are:

Students	A	B	C	D	E	F	G	H	I	J
Marks	B	60	50	75	55	40	55	70	45	65

Marks	85	60	50	75

Calculate Arithmetic Mean by Direct Method.
Solution:

Mean Median and Moce (Bref Prescribed by CBSE for class XI, this book deals only with Arithmeti
保
8.5 MEANING OF ARITHMETIC MEAN

8.5 MEASURES OF CENTRAL TENDENCY

The various measures of central tendency or averages conmmonly used can be broadly classifer in the following categories:
of observations.

- It is ordinarily known
- It is usually denoted by \bar{X} Mean' or 'Average' by the common man.

Kinds of Arithretic Mean
Arithmanc Mean can be co
2) Simple Arithmetic Mean.
(ii) Weighted Arithmetic M;

Let us first understand the calculation.
the following series: ii individuation of Simple Arithmetic
[9.7 INDIVIDUAL SERIEs
As discussed before, indiz
given a separate value, individual series is the
will form an individual serimple, if marks of 10 in which items are listed singly, i.e. each illy il

Total Marks $(\Sigma X)=600$ Marks; Total Number of Students $(N)=10$

Arithmetic Mean $(\overline{\mathrm{X}})=\frac{\Sigma \mathrm{X}}{\mathrm{N}}=\frac{600}{10}=60$ Marks
Ans. Arithmetic Mean $=60$ Marks
Direct Method: Quick Learning

$$
\text { Arithmetic Mean }(\bar{X})=\frac{X_{1}+X_{2}+\ldots \ldots \ldots \ldots \ldots+X_{n}}{N}=\frac{\Sigma X}{N}
$$

The Direct method is generally used when there are few items and the size of the figures is small. 11 s not so, there would be consi

Short-Cut Method
Under this method, any figure is assumed as the mean and deviations are calculated from the assumed mean.

- The need for Short-Cut Method arises when there are large number of observations or is difficult to compute arithmetic mean by direct method.
- This method is also called 'Assumed Mean Method'.

Steps of Short-Cut Method

1. Let the iterns (observations) be $X_{1}, X_{2}, \ldots X_{n}$.

2 Decide any item of the series as assumed mean (A)
3. Calculate the deviations (d) of items from assumed mean (A), i.e. deduct A from eachiter of the series, ie., X - A
4. Take the sum total of deviations and denote it as $\Sigma \mathrm{d}$
5. Find out the total number of items in the series, i.e., N
6. Apply the following formula: $\bar{X}=\mathrm{A}+\frac{\Sigma \mathrm{d}}{\mathrm{N}}$

Where, $\bar{X}=$ Anthmetic mean; $A=$ Assumed mean; d
$\Sigma d=\Sigma(X-A)$, i.e, sum of deviations of varia $-A$, i.e., deviations of variables from assumed mear Example 2. Calculate the arithmetic mean of Method (Assumed Mean Method). Solution:

Calcurlation of Arthmetic Mean (Short-cut Method)			
Students	Marks	$d=X-A$ $(A=50)$	
A	(X)	+35	
B	85	+10	
C	60	0	

Measures of Central Tendency - Arithmetic Mean

D	75	+25
E	55	+5
G	40	-10
\mathbf{H}	55	+5
\mathbf{J}	70	+20
$\mathbf{N}=\mathbf{1 0}$	45	-5

In the given example, assumed mean $(A)=50$. When deviations (d) from assumed mean is calculated for each student, we get sum total of deviations $(\Sigma d)=100$. Given total number of students $(N)=10$, the arithmetic mean will be:

Arithmetic Mean $(\bar{X})=A+\frac{\Sigma d}{N}=50+\frac{100}{10}=60$ Marks
Ans. Arithmetic Mean $=60$ Marks
Note:

1. It should be noted that the answer will remain the same whether Direct Method or Short-cut Method is used 2. In case of individual series, the calculations under short-cut method are more than the direct method. However, in case of discrete series and continuous series, considerable time is saved by adopting the Short-cut Method.
Step Deviation Method
Step Deviation Method further simplifies the short-cut method. In this method, deviations from assumed mean are divided by a common factor (C) to get step deviations. Then, these step deviations are used to calculate the value of arithmetic mean.

Steps of Step Deviation Method

1. Let the items (observations) be $X_{1}, X_{2}, \ldots \ldots X_{n}$
2. Decide any item of the series as assumed mean (A)
3. Calculate the deviations (d) of items from assumed mean (A), i.e. deduct A from each item of the series
4. Find out common factor (C) from d and calculate d^{\prime} (step deviations) which is $\frac{d}{C}$
5. Take the sum total of step deviations (d^{\prime}) and denote it as $\Sigma \mathrm{d}^{\prime}$
6. Find out the total number of items in the series, i.e., N
7. Apply the following formula: $\bar{X}=A+\frac{\Sigma \mathrm{d}^{\prime}}{N} \times C$

Where, $\bar{X}=$ Arithmetic Mean; $\boldsymbol{A}=$ Assumed Mean; $\boldsymbol{d}=X-A$, i.e., Deviations of variables from Assumed Mean; $d^{\prime}=\frac{X-A}{C}$, i.e., Step Deviations (deviations divided by common factor); $\Sigma \boldsymbol{d}^{\prime}=$ Sum of Step Deviations; $\boldsymbol{C}=$ Common Factor; $\boldsymbol{N}=$ Total number of items $\}$ must be noted that "Step Deviation Method" can be used only when deviations from assumed oan (d) are divisible by a common factor.

Example ? Calculate the arithmetic mean of the marks given in Example 1 by the Step $D_{\text {evialion }}$ Method.

Solution:

Sotution. Calculation of Arithmetic Mean (Step Deviation Method)			
Sudents	Marks (X)	$\begin{gathered} d=X-A \\ A=50 \end{gathered}$	$\begin{gathered} d^{\prime}=\frac{X-A}{C} \\ C=5 \end{gathered}$
A	85	+35	$+7$
B	60	+10	$+2$
C	50 (A)	0	0
D	75	+25	+5
, E	55	+ 5	+1
F	40	-10	-2
G	55	+ 5	+1
H	70	+20	+4
I	45	-5	-1
J	65	+ 15	+ 3
$\mathrm{N}=10$			$\Sigma d^{\prime}=20$

In the given exampie, assumed mean $(A)=50$. When deviations (d) from assumed mean is calculalel and divided by a common factor (C), we get sum total of step deviations $\left(\Sigma d^{\prime}\right)=20$. Given total numbero studerts $(N)=10$, the artitnetic mean will be:
Artumetic Mean $\bar{X})=A+\frac{\Sigma d^{\prime}}{N} \times C=50+\frac{20}{10} \times 5=60$ Marks
Ans. 60 Marks
Example 4. Find out the mean height from the following data relating to height measurement of 8 persons in centimeters.

159	161	163	165	167	169	171
Solution:						

	Computation of mean helght (Step Deviation Method)	
Height (X)	$d=X-A$ $A=167$	$d^{\prime}=\frac{X-A}{C}=\frac{X-167}{2}$
159	-8	$C=2$
181	-6	-4
163	-4	-3
165	-2	-2
$167(A)$	0	-1

169	2	1
171	4	2
173	6	3
$\mathbf{N}=\mathbf{8}$		$\mathbf{\Sigma d}=-4$

Mean Height $(\bar{X})=A+\frac{\Sigma d^{\prime}}{N} \times C=167+\frac{-4}{8} \times 2=166 \mathrm{~cm}$
Ans. Mean Height $=166 \mathrm{~cm}$.
Example 5. Following is the marks of 8 students. Find out arithmetic mean by: (i) Direct Method; (ii) Short-Cut Method; (iii) Step Deviation Method.

30	45	60	40	15	65	85	20

Solution:
Computation of Average Marks

Direct Method	Short-Cut Method		Step Deviation Method		
Marks (X)	Marks (X)	$\begin{aligned} & d=X-A \\ & (A=40) \end{aligned}$	Marks (X)	$\begin{aligned} & d=X-A \\ & (A=40) \end{aligned}$	$\begin{gathered} d^{\prime}=\frac{X-A}{C} \\ (C=5) \end{gathered}$
30	30	-10	30	-10	-2
45	45	+5	45	+5	+1
60	60	+20	60	+20	+4
60 40	40	0	40	0	0
40	40	- 25	15	-25	-5
15	15	-25	65	+ 25	+ 5
65	65	+ 25	85	+ 45	+9
85	85	+ 45	20	-20	-4
20	20	-20	$\mathrm{N}=8$		$\Sigma d^{\prime}=8$
$\Sigma \mathrm{I}=360$	$\mathrm{N}=8$	$\Sigma d=40$	$\mathrm{N}=8$		
$\bar{X}=\frac{\Sigma X}{N}=\frac{360}{8}=45 \text { marks }$	$\bar{X}=A+\frac{\sum d}{N}=40+\frac{40}{8}=45 \text { marks }$		$\bar{X}=A+\frac{\sum d^{\prime}}{N} \times C=40+\frac{+8}{8} \times 5=45 \text { marks }$		

Ans. Average Marks $=45$ marks
8.8 DISCRETE SERIES \qquad
In case of discrete series (ungrouped frequency distribution), values of variables. In a discrete
repetitions, i.e., frequencies are given corresponding to different values $\mathrm{N}=$ Sum total of frequency $=\Sigma \mathrm{f}$.
Arithm the total number of observations, i.e., $N=S$ um tom by applying:
Arithmetic mean in a discrete series can be computed by applying:
(i) Direct Method;
(ii) Short-Cut Method; and
(iii) Step Deviation Method.

Direct Method
In the direct method, various items (X) are multiplied with their respective frequencies $(f)_{\text {an }}$ the sum of products (IX) is divided by total of frequencies ($\Sigma \mathrm{f}$) to determine simple arith m $_{\text {m }}$ mean, ie.

$$
\bar{X}=\frac{\Sigma X}{\Sigma I}
$$

Steps of Direct Method

1. Multiply different values of variables (X) with respective frequencies (f) and denote itb IX.

2 Obtain the sum total of $f X$ and denote it by $\Sigma f X$.
3. Find out the total number of items in the series, i.e., $\Sigma \mathrm{f}$ or N
4. Apply the following formula: $\overline{\mathrm{X}}=\frac{\Sigma \mathrm{fX}}{\Sigma \mathrm{f}}$
(Where, $\bar{X}=$ Arithmetic Mean; $\Sigma \mathbf{\Sigma f}=$ Sum of the product of variables with lt: respective frequencies; $\mathbf{\Sigma f}=$ Total number of item
The following example will make the direct method more clear.
Example 6. From the following data of the marks obtained by 60 students of a class, calculat the average marks by the direct method

Marks	20	30	40	50	60	70
No. of students	8	12	20	10	6	4
Solution:						

Marks (C) Calculation of Arithmetic Mean (Direct Method)		
20	No. of Students (f)	(fX)
30	8	160
40	12	360
50	20	800
60	10	500
70	6	360
$\underline{z}=60$		280
Average Marke ($\bar{X})=$ IfX 2,460		$\Sigma \mathrm{Ef}=\mathbf{2 , 4 6 0}$
Ans. 41 marks $\overline{\text { it }}=\frac{60}{60}=41$ marks		

Short-Cut Method

The short

saves considerable time in calculating to calculate the mean in discrete series. This methol

Measures of Central Tendency - Arithmetic Mean
steps of Short-Cut Method

1. Denote the variable as X and frequency as f

2 Decide any item of the series as assumed mean $(A$ \qquad
3. Calculat
item of the series
4. Multiply the deviations (d) with the respective frequency (f) and obtain the total to get Efd.
5. Find out the total number of items in the series, i.e., Σf or N.
6. Apply the following formula: $\bar{X}=A+\frac{\Sigma \mathrm{fd}}{\Sigma \mathrm{f}}$

Where, $\bar{X}=$ Arithmetic Mean; $\boldsymbol{A}=$ Assumed Mean; $\boldsymbol{d}=X-A$, i.e., deviations of variables from Assumed Mean: $\Sigma f d=$ Sum of the product of deviations (d) with the respective frequencies (f); $\mathbf{\Sigma f}=$ Total number of items $\}$

Let us understand the Short-Cut Method with the help of Example 7:
Example 7. Calculate the arithmetic mean of the marks given in Example 6 by the Short-cut Method (Assumed Mean Method).

Solution:

| Calculation of Average Marks (Short-cut Method) | | | |
| :---: | :---: | :---: | :---: | :---: |
| Marks
 (X) | No. of Students
 (f) | $d=X-A$
 $(A=40)$ | fd |
| 20 | 8 | -20 | -160 |
| 30 | 12 | -10 | -120 |
| $40(A)$ | 20 | 0 | 0 |
| 50 | 10 | +10 | +100 |
| 60 | 6 | +20 | +120 |
| 70 | 4 | $\mathbf{\Sigma f d}=+\mathbf{6 0}$ | |

Average Marks $(\bar{X})=A+\frac{\Sigma f d}{\Sigma f}=40+\frac{+60}{60}=41$ marks
Ans. 41 Marks
Step Deviation Method
levinod is a further simplification of sho (C) to ease the calculation process. The deviations
biations (d) are divided by a common factor (C) to

Steps of Step Deviation Method

1. Denote the variable as X and frequency as f.

Decide any item of the series as assumed mean (A)
3. Calculate the deviations (d) of items from assumed mean (A), i e. calculate $(X-A)$ for eaci item of the series
4. Find out a common factor (C) from d and calculate d^{\prime} (step deviations) which is $\frac{d}{C}$
5. Multiply step deviations (d^{\prime}) with frequency (f) and obtain the total to get $\Sigma \mathrm{fd}^{\prime}$

Find out the total number of items in the series, i.e., Σf or \mathbf{N}
7. Apply the following formula: $\bar{X}=A+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma f} \times C$

Where, $\overline{\boldsymbol{X}}=$ Anthmetic Mean; $\boldsymbol{A}=$ Assumed Mean; $\boldsymbol{C}=$ Common Factor; $\boldsymbol{d}=\boldsymbol{X}-\boldsymbol{A}$, i.e., deviations of varibles from Assumed Mean; $d^{\prime}=$ Step Deviations (deviations from assumed mean divided by common factor); $\Sigma \mathrm{fd}^{\prime \prime}=$ Surn of the product of step deviations ($d^{\prime \prime}$) with the respective frequencies (f); $\mathbf{\Sigma f}=$ Total number of items
Example 8 will illustrate the computation of arithmetic mean by step deviation method.
Example 8. Calculate the arithmetic mean of the marks given in Example 6 by the step deviation method.
Solution:

Calculation of Average Marks (Step Deviation Method) Marks No				
$\begin{gathered} \text { Marks } \\ \hline X \end{gathered}$	No. of Students t	$\begin{aligned} & d=X-A \\ & (A=40) \end{aligned}$	$\begin{gathered} d^{\prime}=\frac{X-A}{C} \\ (C=10) \end{gathered}$	$f d^{\prime}$
30	12	-20	-2	-16
40 (A)	20	-10	-1	-12
50	10	0	0	0
60	6	+10	+1	$+10$
70	4	+20	+2	+ 12
	$\mathbf{\Sigma t}=\mathbf{6 0}$	$+30$	+3	+12
				$=+6$

$$
\begin{aligned}
& \text { Average Marks }(\bar{X})=A+\frac{\Sigma \mathrm{d}^{\prime}}{\Sigma f} \times C=40+\frac{+6}{60} \times 10=41 \text { marks } \\
& \text { Ans. } 41 \text { Marks }
\end{aligned}
$$

Example 9.
Example 9.
ut Method; (iii) Step Deviation data, calculate arithmetic mean by: (i) Direct Method; (ii) shor $^{\text {or }}$ Variable (X) Step Deviation Method
Frequency (f)

In the continuous series also, the following three methods are used to calculate arithmetic mean
(i) Direct Method;
(ii) Short-Cut Method; and
(iii) Step Deviation Method.

Direct Method

The direct method under continuous series is the same as under discrete series, except that we first convert the continuous series into dizcrete series by taking the mid-points of each class interval.
Steps of Direct Method

1. Calculate the mid-point of each class-interval and denote it by m
2. Multiply the mid-points (m) with respective frequencies (f) and denote it by fm
3. Obtain the sum total of fm and denote it by $\mathrm{\Sigma fm}$.
4. Find out the total number of items in the series, i.e., Σf or N.
5. Apply the following formula: $\bar{X}=\frac{\Sigma \mathrm{fm}}{\Sigma \mathrm{f}}$.
(Where, $\overline{\boldsymbol{X}}=$ Arithmetic mean; $\Sigma \mathbf{\Sigma f m}=$ Sum of the product of mid-points with the respective frequencies; $\mathbf{\Sigma f}=$ Total number of items

The Direct Method will be more clear with the help of Example 10:

Example 10. The following table gives the marks in English secured by 30 students of a class in their weekly test

In their weekly test:
Marks
No. of Students

Calculate the average marks of students by the direct method.
Solution:

Calculation of Average Marks (Direct Method)			
Marks (X)	No. of Students (f)	Mid-value (m)	fm
$0-5$	2	2.5	5
$5-10$	8	7.5	60
$10-15$	6	12.5	75
$15-20$	10	17.5	175
$20-25$	4	22.5	90
	$\Sigma \mathrm{f}=30$		$\Sigma \mathrm{fm}=405$

Average Marks $(\overline{\mathrm{X}})=\frac{\Sigma f \mathrm{~m}}{\Sigma f}=\frac{405}{30}=13.50 \mathrm{marks}$

[^0]Measures of Central Tendency - Arithmetic Mean
short-Cut Method
The short-cut method in case of continuous series saves considerable time in calculating mean.
Steps of Short-Cut Method

1. Calculate the mid-point of each class-interval and denote it by m.
2. Decide any one mid-point as the assumed mean (A)
3. Calculate the deviations (d) of mid-points from the assumed mean (A), i.e. calculate ($\mathrm{m}-\mathrm{A}$).
4. Multiply the deviations (d) with the respective frequency (f) and obtain the total to get Efd.
. Find out the total number of items in the series, i.e., Σf or N.
5. Apply the following formula: $\bar{X}=A+\frac{\Sigma \mathrm{fd}}{\Sigma \mathrm{f}}$.

Where, $\overline{\boldsymbol{X}}=$ Arithmetic Mean; $\boldsymbol{A}=$ Assumed Mean; $\boldsymbol{d}=m-A$, i.e., deviations of mid-points from assumed mean; Σ Ifd = Sum of the product of deviations (d) with the respective trequencies (f); $\mathrm{zf}=$ Total number of items)

The use of Short-Cut Method will be clear from the Example 11:
Example 11. Calculate the arithmetic mean of the marks given in Example 10 by the short-cut method.

Solution:

Solution:	Calculation of Average Marks (Short-Cut Method)			fo
Marks	No. of Students	Mid-value m	$(A=12.5)$	-20
0-5	f	2.5	-10	-40
0-5	8	7.5	-5	0
5-10	8	12.5 (A)	0	+50
10-15	6 10	17.5	+5	+40
15-20	10	22.5	+ 10	$\Sigma \mathrm{fd}=+30$
20-25	4			
	$\mathbf{\Sigma f}=\mathbf{3 0}$			

Average Marks $(\bar{X})=A+\frac{\Sigma f d}{\Sigma f}=12.5+\frac{+30}{30}=13.50$ marks
Ans. Average Marks $=13.50$
Step Deviation Method
Step Deviation Method
When class-intervals for all the classes in a continuous series are of same method.
then short-cut method can be further simplified by the step-deviation method
then short-cut method can be further simplified by the step-devia

Steps of Step Deviation Method

1. Calculate the mid-point of each class-interval and denote it by m.
2. Decide any one mid-point as the assumed mean (A)
3. Calculate the deviations (d) of mid-points from the assumed mean (A), i.e. calculate (m -)
4. Find out a common factor (C) from d and calculate d^{\prime} (step deviations) which is d
5. Multiply step deviations (d^{\prime}) with frequency (f) and obtain the total to get $\Sigma \mathrm{fd}^{\prime}, \mathrm{C}$
6. Find out the total number of items in the series, i.e., $\Sigma \mathrm{f}$ or N
7. Apply the following formula: $\overline{\mathrm{X}}=\mathrm{A}+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma \mathrm{f}} \times \mathrm{C}$.
(Where, $\overline{\boldsymbol{X}}=$ Arithmetic Mean; $\boldsymbol{A}=$ Assumed mean. $\boldsymbol{C}=$ Common Factor; $\boldsymbol{d}=m-\boldsymbol{A}$, i.e., deviations points (m) from assumed mean; $d^{\prime}=$ Step Deviations (deviations from devitions of mid divided by common factor); $\Sigma f^{\prime} d^{\prime}=$ Sum of the product of step assumed mean with respective frequencies (f); $\Sigma f=$ Total numberions ($d^{\prime \prime}$) The step deviation method will be more clear by Example 12
Example 12 Calculate the arithmetic mean of the mark method.
Solution:
Calculation of Average Marks (Step Deviation Method)

Marks \boldsymbol{x}	No. of Students f	Mid-value m	$d=m-A$ $(A=12.5)$	$d^{\prime}=\frac{m-A}{C}$ $(C=5)$	$f d^{\prime}$
$0-5$	2	2.5	-10	-2	
$5-10$	8	7.5	-5	-1	-4
$10-15$	6	$12.5(A)$	0	0	-8
$15-20$	10	17.5	+5	+1	0
$20-25$	4	22.5	+10	+2	+10
	$\Sigma f=30$				+8

Average Marks $(\overline{\mathrm{X}})=\mathrm{A}+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma \mathrm{f}} \times \mathrm{C}=12.5+\frac{+6}{30} \times 5=13.50$ marks
Ans. Average marks $=13.50$

Explore More

For calculating arithmetic mean in a continuous series, the following assur
. The class-intervals must be closed
2. The width of each class-interval should be equal
between of the observations in each equal.
The midtween lower and upper limits. class.

Example 13. The following table shows the marks obtained by 90 studen 8.17 examination. Calculate the average marks by: (i) Direct Mortain (iii) Step Deviation Method.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. 0f Students	3	8	12	16	19	16	11	5

Calculation of Average Marks

Direct Method				Short-cut Method $\quad \mathrm{m}=$ mid-point; $\mathrm{f}=$ No. of Students							
Marks	f	m	$f m$	Short-cut Method		Set deviation Method					
				$(A=45)$	fd	$\begin{aligned} & d=m-A \\ & (A=45) \end{aligned}$	$\begin{aligned} & d^{\prime}=\frac{m-A}{C} \\ & (C=10) \end{aligned}$	$f d^{\prime}$			
0-10	3	5	15	-40	-120	-40	-4	-12			
10-20	8	15	120	-30	-240	-30	3	-24			
20-30	12	25	300	-20	-240	-20	-2	-24			
30-40	16	35	560	-10	-160	-10	-	-24			
40-50	19	45	855	0	0		-1	-16			
50-60	16	55	880	+10		0	0	0			
60-70	11	65			+160	+10	+1	+16			
70-80	5	65	715	+20	+220	+20	+2	+22			
	5	75	375	+30	+150	+ 30	+3	+15			
	$\boldsymbol{\Sigma f}=\mathbf{9 0}$		$\underset{=3,820}{\Sigma \mathrm{fm}}$		$\begin{gathered} \quad \Sigma \mathrm{fd} \\ =-230 \end{gathered}$			$\Sigma \mathrm{fd}^{\prime}=\mathbf{- 2 3}$			
$\bar{X}=\frac{\Sigma \mathrm{fm}}{\Sigma f}=\frac{3,820}{90}=42.44$				$\begin{aligned} & \bar{X}=A+\frac{\Sigma f d}{\Sigma f} \\ & =45+\frac{-230}{90}=42.44 \end{aligned}$		$\begin{aligned} \bar{X} & =A+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma f} \times C \\ & =45+\frac{-23}{90} \times 10=42.44 \end{aligned}$					

Ans. Average Marks $=42.44$
8.10 CHARLIER'S ACCURACY CHECK \qquad
frede errors may be made while dalculating the value of mean. When the arithmetic mean of a
frequency distribution is calculated by shortcut or step-deviation nethod, the accuracy of the culations can be checked by using the following formulae given by charlier.
$\Sigma f(d+1)=\Sigma f d+\Sigma f($ for short-cut Method $)$
$\Sigma f\left(\mathrm{~d}^{\prime}+\lambda\right)=\Sigma \mathrm{fd}^{\prime}+\Sigma \mathrm{f}$ (for step deviation Method)
If the two sides of these equations do not tally, the cakculations are incorrect.
The Charlier's Adcuracy Check will be more clear from the following example:

Inclusive Class-Intervals
When the data is given in inclusive series, then it is not necessary to adjust the classes for calculating arithmetic mean as the mid-value remains the same whether the adjustment is made or not. So, inclusive class-intervals are not converted into an exclusive class-interval serie However, in case of median and mode (discussed in the next chapter), the inclusive series have to bo converted into exclusive senies

Example 25. Find mean of the following data:

Class-Interval	$50-59$	$40-49$	$30-39$	$20-29$	$10-19$	$0-9$
Frequency	1	3	8	10	15	3

Solution:
In the given example, it is neither necessary to convert the data into exclusive class-interval series nor to arrange the data in ascending order.

Open-end Series
Open-end class-interoals are those which do not have the lower limit of the first class-interval and the upper limit of the last class-interval. For example, 'less than 10 ', or 'more than 100 ' are open end class-interval.

Calculation of Mean in Open-end Class-Intervals
In such cases, mean cannot be found out unless we assume the missing class limits. The missing values depend on the pattern of class-intervals of other classes.
It the given class-intervals are not equal, then it poses some difficulty in deciding the limits of the opeltend classes. In such cases, limits have to be assumed on some rational basis.
The calculation of mean under open-end distribution with equal class-intervals and unequal class-internul will be clear with the help of Examples 26 and 27 respectively.

Example 26. The foll
Example
He arithmetic mean.

Daily income (₹)	Below 75	$75-150$	$150-225$	$225-300$	$300-375$	$375-450$	450 and over
No. of families	6	17	20	6	5	4	2

In the given example, the class-intervals are uniform, i.e., 75. So, we can assume that class-intervals of open-end classes are also equal to 75 . It means, the lower limit of the first class-interval is zero (i.e. 0-75) and the upper limit of the last class is 525 (i.e. 450-525).
Now, the arithmetic mean can be calculated by arranging the trequency distribution.
Computation of Average Dally Income

Daily Income (₹) (X)	No. of Families (f)	Mid-value (m)	$d=m-A$ $(A=262.5)$	$d=\frac{m-A}{C}$ $(C=75)$	$f d^{\prime}$
$0-75$	6	37.5	-225	-3	-18
$75-150$	17	112.5	-150	-2	-34
$150-225$	20	187.5	-75	-1	-20
$225-300$	6	$262.5(A)$	0	0	0
$300-375$	5	337.5	+75	+1	+5
$375-450$	4	412.5	+150	+2	+8
$450-525$	2	487.5	+225	+3	+6
	$\mathbf{\Sigma f = 6 0}$				$\Sigma / d^{\prime}=-53$

Average Daily Income $(\bar{X})=A+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma \mathrm{f}} \times \mathrm{C}=262.5+\frac{-53}{60} \times 75=₹ 196.25$
Ans. Average Daily Income =₹ 196.25
Example 27. Calculate mean of the following series:

Marks	Below 20	$20-50$	$50-90$	$90-140$	Above 140
No. of Students	10	20	40	15	15
Solution.					

Solution:
In the given example the width of the second class-interval is 30 and of the thind class-interval is 40 . The
width of the fourth
of the firs lourth interval is 50 . It means that . 60 . The class-intervals would inen be:

		Mid-value	tm
Marks (X)	No. of Students (i)	(m)	100
$0-20$	10	10	700
$20-50$	20	35	2.800
50-90	40	70	1.725
90-140	15	115	2,550
140-200	15	170	Itm $=7,875$
	If $=100$		

Average Marks $\overline{\mathrm{X}})=\frac{\Sigma \mathrm{fm}}{\Sigma \mathrm{f}}=\frac{7,875}{100}=78.75$ marks
Ans. Average Marks $=78.75$ Marks

Unequal Class-Intervals

Sometimes the class-interval of the distribution is unequal. In such cases, mean can be determined in the usual manner after calculating the mid-values of each interval. It means, class-intervals are not made equal.
This will be clear with the help of Example 28 :
Example 28. Calculate arithmetic mean from the following data:

Marks	$0-10$	$10-20$	$20-40$	$40-70$	$70-100$
Na. of Students	8	12	30	6	4
Solution:					

Solution:
In the given example, the class-intervals are unequal. Mean will be calculated directly after calculating the
mid-points. mid-points.

Marks	Mid-value (m)	No. of Students (f)	$\mathbf{f m}$
$0-10$	5	8	40
$10-20$	15	12	180
$20-40$	30	30	900
$40-70$	55	6	330
$70-100$	85	4	340
	$\mathbf{\Sigma f}=60$	$\mathbf{\Sigma f m}=\mathbf{1 , 7 9 0}$	

Average Marks $(\overline{\mathrm{X}})=\frac{\Sigma \mathrm{m}}{\Sigma \mathrm{f}}=\frac{1,790}{60}=29.83$ Marks
Ans. Average marks $=29.83$ Marks

Megsures of Central Tenclency - Arithmetic Mean

CASE 4: Open-End Series (Lower limit of first class
and upper limit of last class not given): Missing limits need lobe assumed depending on the pattern of class-intervals.

Mean $(\bar{X})=A+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma \mathrm{t}} \times C=55+\frac{6}{30} \times 10=57$ Marks

10-19, 3: Inclusive Class-Intervals (Classes of type into Exclus9 are given): Convert Incluas (Classes of type

CASE 5: Unequal Class-Intervals There is no need to make class-intervals equal, i.e. calculate Mean in usual manner.

X	0-5	5-10	10-20	20-30	30-5	50-60
f	9	3	6	5	5	8
Marks (X)	No. of Stud. (f)	Mid val (m)	$A=2$			fd
0-5	9	2.5	-22.5		. 5	-40.5
5-10	3	7.5	-17.5		.	-10.5
10-20	6	15	-10		-2	-12
20-30	5	25	0		0	0
30-50	5	40	15		3	15
50-60	8	55	30		6	48
	$\Sigma \mathrm{Ef}=36$					$\Sigma f d^{\prime}=0$
$\operatorname{Mean}(\overline{\mathrm{X}})=\mathrm{A}+\frac{\Sigma \mathrm{If}^{\prime}}{\Sigma \mathrm{f}^{\prime}} \times \mathrm{C}=25+\frac{0}{36} \times 5=25 \text { Marks }$						

Quick Learning - Arithmetic Mean in Special Cases

1. Cumulative Series ('Less than' or 'More than'): Convert the cumulative frequency into a five frequency distribution and then calculate mean in the usual manner.
given: Calculate mean in the usual manner without converting the mid-values into class-intervals.
2. Inclusive Class-Intervals: Calculatemean in the usual manner without converting the series into an exclusive class-interval series.
. missing class limits are assumed, which depends on the pattern of class-intervals of other classes.
armined in the usual manner after calculating the mid-values of each interval.

8.13 PROPERTIES OF ARITHMETIC MEAN

1. The sum of deviations of the observations from their arithmetic mean is always zeror,ienter $\boldsymbol{\Sigma}(\boldsymbol{X}-X)=\mathbf{0}$. It happens because arithmetic mean is a point of balance, i.e. sum of positiv, deviations from mean is equal to sum of negative deviations. Due to this property arithmetic mean is characterised as the centre of gravity.
This can be made clear with the help of an illustration:

X	$(X-\bar{X})$ $(\bar{X}=7)$
3	-4
5	-2
8	+1
12	$\mathbf{\Sigma X}=\mathbf{2 8}$

2. The sum of the square of the deviations of the items from their Arithmetic Mean is minimum, i.e., $\Sigma(X-\bar{X})^{2}$ is minimum. The sum is less than the sum of the square of the deviations of the items from any other value.
It is made clear with the following illustration:

\boldsymbol{x}	$\bar{X}-\bar{x})$ $\bar{X}=7$	$(X-\bar{X})^{2}$	$X-8$	$(X-8)^{2}$
3	-4	16	-5	25
5	-2	4	-3	9
8	+1	1	0	0
12	+5	25	+4	16
	$\Sigma(X-\overline{\bar{x}})^{2}=46$		$\boldsymbol{\Sigma}(X-8)^{2}=50$	

3. Mean of the combined series: If the arithmetic mean and number of items of two or more than two related groups are given, then we can compute the combined means of the estites as a whole. (Combined Mean is discussed in detail in 8.14 Section)
4. If each observation of a series is increased or decreased by a constant, say k, then thin \bar{X}-k. For erann of the new series also get increased or decreased by k. i.e., new meall ${ }^{\text {is }}$ of the four items, then mean of mean of four items $(3,5,8,12)$ is 7 . If 2 is added to enal mean will be 9 .
5. If all the items in a series are multiplied or divided by a constant, then the mean of the ${ }^{\text {sil }}$ observations also gets multiplied or divided by it. For example, the arithmetic mean of foulf items $(3,5,8,12)$ is 7 . If each item is multiplied by, say 5 , then mean of new four ite ${ }^{m s}$ (${ }^{\text {(5) }}$ $25,40,60$) will also become 5 times of the original mean, i.e. new mean will be 35 .
suppose men each item of the series is increased by 3 .
a. 1 . When the following cases:
Q. 1. When each item of the series is increased by 3 .

Ans. New Mean $=30+3=33$
Q. 2. When each item of the series is decreased by 5 .

Ans. New Mean $=30-5=25$
Q. 3. When each item of the series is multiplied by 2.

Ans. New Mean $=30 \times 2=60$
Q. 4. When each item of the series is divided by 6 .

Ans. New Mean $=30 \div 6=5$
6. If out of arithmetic mean (\bar{X}), number of items (N) and total of the values (ΣX), any two values are known, then third value can be easily found out.

$$
\bar{X}=\frac{\Sigma X}{N} \text {; or } \Sigma X=\frac{\bar{X}}{N} \text {; or } N=\frac{\Sigma X}{\bar{X}}
$$

On the basis of this property, we can determine the missing items, missing frequency or correct mean, in case of any error.

8.14 COMbined mean

When two or more distributions are given with their number of items and arithmetic means, the combined mean can be calculated by applying the following formula:

$$
\bar{x}_{1,2}=\frac{N_{1} \bar{x}_{1}+N_{2} \bar{x}_{2}}{N_{1}+N_{2}}
$$

(Where, $\bar{X}_{1,2}=$ Combined Mean; $\bar{X}_{1}=$ Arithmetic Mean of first distribution; $\bar{X}_{2}=$ Anithmetic Mean of second distribution; $\boldsymbol{N}_{1}=$ Number of items of first distribution; $\boldsymbol{N}_{2}=$ Number of items of second distribution\} The aforesaid formula can be extended to more than two distributions in the following form:

$$
\bar{x}_{1,2, \ldots \ldots, n}=\frac{N_{1} \bar{x}_{1}+N_{2} \bar{x}_{2}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots .+N_{n} \bar{x}_{n}}{N_{1}+N_{2}+\ldots \ldots \ldots . N_{n}}
$$

The concept of combined mean will be more clear from the following examples.

$$
\begin{aligned}
& \text { Comblned Mean }\left(\bar{X}_{1,2}\right)=\frac{N_{1} \bar{X}_{1}+N_{2} \bar{X}_{2}}{N_{1}+N_{2}} \\
& \text { Gilven: } \bar{X}_{1}=12, \bar{X}_{2}=20, N_{1}=80, N_{2}=60
\end{aligned}
$$

$$
\left(\bar{X}_{1,2}\right)=\frac{(80 \times 12)+(60 \times 20)}{80+60}=\frac{960+1,200}{140}=15.43
$$

Ans. Combined Mean $=15.43$

Example 30. The average rainfall of a city from Monday to Saturday is 0.3 cms . Due to heary rainfall on Sunday, the average for the whole week rose to 0.5 cms . How much was the rainfall on Sunday?
Solution:
Consider the rainfall from Monday to Saturday (6 days) as first group and rainfall on Sunday (1 day) as second group

```
Combined Mean \(\left(\bar{X}_{1,2}\right)=\frac{N_{1} \bar{X}_{1}+N_{2} \bar{X}_{2}}{N_{1}+N_{2}}\)
Given: \(N_{1}=6, N_{2}=1, \bar{X}_{1}=0.3, \bar{X}_{1,2}=0.5\)
\(0.5=\frac{(6 \times 0.3)+\left(1 \times \bar{X}_{2}\right)}{6+1}\)
\(3.5=1.8+\bar{x}_{2}\)
\(\bar{x}_{2}=1.7\)
Ans. Fairiall on Sunday \(=1.7 \mathrm{cms}\)
```

Example 31. The average marks of 50 students in class is 5 . The pass result of 40 students who took up a class test is given below. Calculate mean marks of 10 students who failed.

Maris	4	5	6	7	8	9
Ma. of Students	8	10	9	6	4	3
Solutiv						

Solution:

$$
\bar{X}_{1,2}=5 ; \text { Mean of Pass Sudents }\left(\bar{X}_{1}\right)=\text { ?, Mean of Fail Students }\left(\bar{X}_{2}\right)=\text { ?, } N_{1}=40, N_{2}=10
$$

Calculation of Mean Marks of 40 students (\bar{X}_{1})

$\begin{gathered} \text { Marls } \\ (x) \\ \hline \end{gathered}$	No. of Students (f)	fX
4	8	32
5	10	50
6	9	54
8	6	42
9	4	32
	3	27
	If $=40$	$\mathbf{\Sigma f} \mathrm{X}=237$

$\bar{x}_{1}=\frac{\Sigma x x}{\Sigma f}=\frac{237}{40}=5.925$ marks
Combined Mean $\left(\bar{x}_{1,2}\right)=\frac{N_{1} \bar{x}_{1}+N_{2} \bar{x}_{2}}{N_{1}+N_{2}}$

Masluve ol Central Tendency - Arithmetic Mean
$\varepsilon=\frac{(40 \times 5.925)+\left(10 \times \bar{X}_{2}\right)}{40+10}$
$250=237+10 \bar{x}_{2}$
$\bar{x}_{2}=1.3$

fanmple 32 . The mean wage of 100 workers is ₹ 284 . The mean wage of 70 workers is ₹ 290 .
Find the mean wage of remaining 30 workers.
splution:
combined Mean $\left(\bar{X}_{1,2}\right)=\frac{N_{1} \bar{X}_{1}+N_{2} \bar{X}_{2}}{N_{1}+N_{2}}$
Given: $\bar{X}_{1,2}=284, \bar{X}_{1}=290, N_{1}=70, N_{2}=30$
$284=\frac{(70 \times 290)+\left(30 \times \bar{X}_{2}\right)}{70+30}$
$28,400=20,300+30 \bar{X}_{2}$
$30 \bar{X}_{2}=8,100$
$\bar{x}_{2}=\frac{8,100}{30}=₹ 270$
Ans. Mean wage of 30 workers $=₹ 270$
Example 33. The mean age of a combined group of men and women is 30 years. If the mean age of the group of men is 32 and that of the group of women is 27 , find out the percentage of men and women in the group.
Solution:
Let x be the percentage of men in the combined group. Therefore, percentage of women $=100-x$. Given: $\bar{X}_{1}($ Men $)=32$ years; $\bar{X}_{2}($ Women $)=27$ years; $\bar{X}_{1,2}($ Combined $)=30$ years

Combined Mean $\left(\bar{X}_{1,2}\right)=\frac{N_{1} \bar{X}_{1}+N_{2} \bar{X}_{2}}{N_{1}+N_{2}}$
$30=\frac{32 x+27(100-x)}{x+(100-x)}$
$32 x-27 x=3,000-2,700$
Ans. $5 x$ or $x=60$. It means, men are 60% and women $=100-60=40 \%$
B+5 $=60 \%$; Women $=40 \%$

${ }^{2 / 5}$ CORRECTED MEAN

ersht, certain wrong items may be taken while calculating the thithmes, due to mistake or overstght, certain wrong items may berrect arithmetic mean, without aloulating the arithmetic mean from the beginning.
$C_{0 r r e c t} \bar{X}=\Sigma X($ Wrong $)+($ Correct value $)-($ Incorrect value $)$

Steps to Calculate Correct Arithmetic Mean
The steps involved in calculating correct arithmetic mean (\bar{X}) are:

1. First of all, Incorrect ΣX is calculated. (We know, $\bar{X}=\frac{\Sigma X}{N}$. So, Incorrect $\Sigma X=N \bar{X}$).
2. From this Incorrect ΣX, subtract wrong or incorrect items and add correct items to ger Correct $\Sigma \mathrm{X}$.
3. Divide Correct ΣX by number of items (N) to get Correct \bar{X}, i.e.

$$
\text { Correct } \bar{X}=\frac{\text { Correct } \Sigma X}{N}
$$

This is illustrated in the following examples.
Example 34. The average weight of a group of 25 boys was calculated to be 52 kg . It was later discovered that one weight was misread as 45 kg instead of 54 kg . Calculate the correct average weight.
Solution:

$$
\begin{aligned}
& \bar{X}=\frac{\Sigma X}{N} \\
& \text { Or, } \Sigma X=\bar{X} \times N \\
& \text { Given: } \bar{X}=52, N=25 \\
& \Sigma X=52 \times 25=1,300
\end{aligned}
$$

But 1,300 is a wrong value as the weight of one boy was misread as 45 kg instead of 54 kg
Correct $\Sigma \mathrm{X}=1,300$ - Incorrect ltem + Corre
Correct Average Height $(\bar{X})=\frac{\Sigma X}{N}=\frac{1,309}{25}=52.36 \mathrm{~kg}$
Ans. Correct Average Weight $=52.36 \mathrm{~kg}$
Example 35. The mean salary paid to 1,000 employees of a factory was found to be ₹ 180.4 . 165 insteat was discovered that the wages of two employees were wrongly taken as 297 and Solution:

$$
\begin{aligned}
& \bar{X}=\frac{\Sigma X}{N} \\
& \text { Or, } \Sigma X=\bar{X} \times N \\
& \text { Given: } \bar{X}=180.4, N=1,000 \\
& \Sigma X=180.4 \times 1,000=1,80,400
\end{aligned}
$$

But $1,80,400$ is a wrong value as the wages of two employees were wrongly taken as 297 and 165 inster $^{\text {ted }}$
of 197 and 185 .
Corrected $\Sigma X=1,80,400$ - Incorrect Item + Correct Item
Corrected $\Sigma X=1,80,400-297-165+197+185=1,80,32$

Inleset Central Tendency - Arithmetic Mean

$$
\text { correct Mean Salary }(\bar{X})=\frac{\Sigma X}{N}=\frac{1,80,320}{1,000}=₹ 180.32
$$

$$
\text { ₹ } 180.32
$$

Ans."
mple 36 . The average marks in statistics of 10 students of a class were 68 . A new student fuld dmission with 72 marks whereas two existing students left the college. If the marks of
ghatution:
$\bar{x}=\frac{\Sigma X}{N}$
$0 ; 2 \mathrm{X}=\overline{\mathrm{X}} \times N$
Given: $\bar{X}=68, N=10$
$\Sigma \mathrm{X}=68 \times 10=680$
Corected $\Sigma \mathrm{X}=680-40-39+72=673$
Correct Average Marks $(\bar{X})=\frac{\Sigma X}{N}=\frac{673}{9}=74.78$ marks
Ans. Correct Average Marks $=74.78$ marks
Example 37. The average age of a class having 35 students is 14 years. When the age of the lass teacher is added to the sum of the ages of the students, the average rises by 0.5 year. What must be the age of the teacher?
Solution:
$\bar{x}=\frac{\Sigma X}{N}$
$0 r, \sum \mathrm{X}=\overline{\mathrm{X}} \times \mathrm{N}$
Total age of 35 students $=35 \times 14=490$
Total age of students and the teacher together $=36 \times 14.5=522$
Age of teacher $=522-490=32$ years
Ans. Teacher's age $=32$ years
Example 38 What will bin if is known that for a group of 10 students, scoring
alaverage of 60 mean 80 instead of 75 ?
Solution:
$\bar{x}=\frac{\Sigma x}{N}$
$\sum x=\bar{x}_{N}$
$\bar{x}=60, N=10$
$\begin{aligned} & 2 x=60 \times 10 \\ & \text { Correo }\end{aligned}=600$
Orrected $\Sigma X=600-80+75=595$
Correct Mean $^{\text {(}}$) $=\frac{\Sigma X}{N}=\frac{595}{10}=59.5$ marks
Ans. $_{\text {A }}$ New Mean $=59.5$

8.16 MEBTS AND DEMERITS OF ARITHMETIC MEAN

Merit of Arithmetic Mean ithmetic mean is the most widely used measure of central tendency in practice becaus of the following merits:

1. Simple to Understand and Easy to Compute: The calculation of arithmetic mean requires simple knowledge of addition, multiplication and division of numbers.

- So, even a layman with elementary knowledge can c lculate arithmetic mean
- It is also simple to understand the meaning of arithmric mean, e.g., the value per item or cost per unit, etc.

2. Certainty: Arithmetic mean is rigidly defined by an algeb ic formula. Therefore, everyone who computes the average, get the same answer. Arith netic mean leaves no scope for deliberate prejudice or personal bias.
3. Based on all items: Arithmetic mean takes into account all values into conideration. S_{0} it is considered to be more representative of the distribution
4. Least affected by fluctuations in sample: Of ali the averages, arithmetic mean is leas affected by fluctuations of sampling

- If the number of items in a series is large, the arithmetic mean provides a good basis of comparison since abnormalities (errors) in one direction are set off against the abnormalities in another direction.
- Due to this reason, arithmetic average is believed to be a stable measure.

5. Convenient Method of Comparison: Arithmetic Average forms a convenient method comparison of two or more distributions
6. Algebraic treatment: Arithmetic mean is capable of further algebraic treatment. It is capable of being treated mathematically and hence, it is widely used in the computation of various other statistical measures such as mean deviation, standard deviation, etc.
7. No arrapgement required: The computation of arithmetic mean does not involve the arrapgement or grouping of items.
of Arithmetic Mean
Although, arithmetic mean satisfies most of the properties of an ideal average, it has certail drawbacks and should be used with care. Some demerits of arithmetic mean are:
8. Affected by extreme values: Since arithmetic average is calculated from all the items of series, it is unduly affected by extreme values (i.e. very small or very large items). For example, if monthly income of four persons is 5,$000 ; 7,000 ; 8,000$; and $1,00,000$, then thell arithmetic mean will be 30,000 , which does not represent the Jata
9. Assumption in Case of Open-end Classes: In case of open-end classes, the cannot be calculated unless assumptions are made regarding the marithmetic mean
10. Af we have an average of 3.2 children per family for results which appear almost absurd. result (average) is absurd as a child cannot be fivid particular community, obviously the Not possible in case of qualitative characteristics. Ar into fractions.
for a qualitative data; like data on intelligence, honesty, smoking cannot be computed median (discussed later) is the only average to be used.
11. More stress on items of higher value: The arithmetic mean gives more importance to higher items of a series as compared to smaller items, i.e. it has an upward bias.

- If out of five items, four are small, and one item is quite big, then big item will push up the average considerably.
- But, the reverse is not true. If in series of five items, four have big values and one has small value, the arithmetic average will not be pulled down very much.

6. Complete data required: The arithmetic mean cannot be calculated without all the items of a series. For example, if out of 1,000 items, the values of 999 items are known, then arithmetic average cannot be calculated. Other averages like median and mode do not need complete data.
7. Calculation by observation not possible: Arithmetic mean cannot be computed by simply observing the series like median or mode.
A. No Use of Graph: Arithmetic mean cannot be calculated by using graph.
8. Non-existent value as mean: Sometimes, arithmetic average can be a fictitious figure which does not exist in the series. The arithmetic average of $8,14,17$, and 25 is 16 . No items of the series have value of 16 .

$*$

Certainty and it is Rigldy Defined -
fakes into account all values into consideration -
Least affected by fluctuations in sample Convenient Method of Comparison $\mathrm{D}_{00_{8}}$ Catiot Cable of further Algebraic Treatment not involve arrangement or grouping of items -

8.17 WEIGHTED MEAN

Meaning

Weighted Mean refers to the average when different items of a series are given different weights according to their relative importance.

- In the computation of simple arithmetic mean, it is assumed that all the items in the series are of equal importance. However, there are situations, in which values of observations in the series are not of equal importance.
- If all the items are not of equal importance, then simple arithmetic mean will not be a good representative of the given data. Hence, weighting of different items becomes necessary
- The weights are assigned to different items depending upon their importance, i.e., more important items are assigned more weight.

Computation of Weighted Mean
In calculating the weighted mean, each item of the series is multiplied by its weights and the product so obtained is totalled. This total is divided by the total of weights and the resulting figure is weighted mean.

Let $\mathrm{W}_{1}, \mathrm{~W}_{2} \ldots . . . \mathrm{W}_{\mathrm{n}}$ be the weights attached to variable values $\mathrm{X}_{1}, \mathrm{X}_{2} \ldots \ldots . . \mathrm{X}_{\mathrm{n}}$ respectively. Then the weighted arithmetic mean, usually denoted by \bar{X}_{w} is given by:
$\bar{x}_{w}=-\frac{W_{1} x_{1}+W_{2} x_{2}+\ldots \ldots \ldots+W_{n} x_{n}}{W_{1}+W_{2}+\ldots \ldots \ldots \ldots+W_{n}}$
The above formula can be written in short as:
$\bar{x}_{w}=\frac{\Sigma W X}{\Sigma W}$
[Where, $\bar{X}_{\boldsymbol{w}}=$ Weighted Mean; $\Sigma W X=$ Sum of the products of the iterns and thein respective weights; $\Sigma \boldsymbol{\Sigma}=$ Sum of the weights)
Steps for Calculating Weighted Mean

1. Denote the variables as X and weights as W.
2. Multiply variables (X) with weights (W) and obtain the total to get $\Sigma W X$.
3. Apply the following formula: $\bar{X}_{W}=\frac{\Sigma W X}{\sum W}$

The concept of weighted mean will be clear from the following examples.

Example 39. Calculate the weighted mean of the following data:

Items	10	15	20	25	30	35
Weight	6	9	4	10	5	2

Slustion:	Weight (W)	$W X$
10	6	60
15	9	135
20	4	80
25	10	250
30	5	150
35	2	70
	$\Sigma W=36$	$\Sigma W X=745$

$$
\begin{aligned}
& \bar{X}_{W}=\frac{\Sigma W X}{\Sigma W}=\frac{745}{36}=20.69 \\
& \text { Ans. Weighted Mean }=20.69
\end{aligned}
$$

Example 40. Calculate weighted mean by weighting each price by the quantity consumed:

Food items	Quantity consumed (in kg)	Price in Rupees (per kg)
Wheat	300	10
Rice	400	20
Sugar	200	15
Potato	500	7

Solution:

Food items	Quantity consumed (in kg) (W)	Price in Rupees (per kg) (X)	WX
Wheat	300	10	3,000
Rice	400	20	8,000
Sugar	200	15	3,000
Polato	500	7	3,500
	$\Sigma W=\mathbf{1 , 4 0 0}$		$\Sigma W X=17,500$

$$
\bar{X}_{W}=\frac{\Sigma W X}{\Sigma W}=\frac{17,500}{1,400}=12.5
$$

$$
\text { Ans. Weighted mean }=12.5
$$

Example 41. A candidate obtained the following percentage of marks in different subjects in
an examer 12.5
4.

an examination: A candidate obtained the following percentage of marks		
Subloct Marks Engllish 70 Maths 85 Economics 90 Busingess Studies 80 Accounts 95		

Find the weighted Mean if weights are 2,1,2,3,4 respectively.
Solution:

Subject	Marks X	Weights	
	70	2	$W X$
English	85	1	140
Maths	90	2	85
Economics	80	3	180
Business Studies	95	4	240
Accounts		$\mathbf{\Sigma W = 1 2}$	380
	$\mathbf{\Sigma W X = 1 , 0 2 5}$		

$$
\bar{X}_{W}=\frac{\Sigma W X}{\Sigma W}=\frac{1,025}{12}=85.42
$$

Ans. Weighted mean $=85.42$ marks
Example 42. Calculate the value of weighted mean from the given details of a college:

Course	Students Appeared	Students Passed
B. Com (H)	200	180
B. Com (P)	400	320
B.A.	700	490
M. Com	300	150
Solution:		

Course	Students Appeared (W)	Students Passed	Percentage Pass (X)	WX
B. Com (H)	200	180	$\frac{\text { Passed }}{\text { Appeared }} \times 100$	

Ans. Weighted mean $=71.25 \%$

Example 43. An examination was held
various subjects were different. Theld to decide the award of a scholarship. The weigh it are given below: \quad marks obtained by 3 candidates (out of 100 in each suble

calculate the weighted Arithmetic Mean to award the scholarship.
Solution:

Subject	Weights	Student A		Student B		Student C	
	(W)	Marks $\left(X_{A}\right)$	$W X_{A}^{\prime}$	Marks $\left(X_{B}\right)$	$W X_{B}$	Marks $\left(X_{C}\right)$	$W X_{C}$
	4	60	240	57	228	62	248
Business Studies	3	62	186	61	183	67	201
Economics	2	55	110	53	106	60	120
English	1	67	67	77	77	49	49
	10	244	603	248	594	238	618

Student A	Simple Arithmetic Mean	Weighted Miean
Student B	$\bar{X}_{A}=\frac{\Sigma X_{A}}{N}=\frac{244}{4}=61$	$\bar{X}_{W A}=\frac{\Sigma W X_{A}}{\Sigma W}=\frac{603}{10}=60.3$
Student C	$\bar{X}_{B}=\frac{\Sigma X_{B}}{N}=\frac{248}{4}=62$	$\bar{X}_{W B}=\frac{\Sigma W X_{B}}{\Sigma W}=\frac{594}{10}=59.4$

Ans. From the a
Note: Accom the above calculations, C should get the scholarship as his weigno
arenot
Example 44. Under what conditions, weighted mean is

1. Equal to simple arithmetic mean;
2. Greater than simple arithmetic mean
3. Leess than simple arithmetic mean.

Solution the answer with the help of an example.

ollution: 1. $w_{\text {ein }}$
 Weighted mean is equal to simple arithmetic mean when equal weights in the
 is equal to simple arithmetic mean when equal example:

FORMULAE AT A GLANCE

FORMULAE AT A GLANCE		
1, SIMPLE MEAN ndolvidual Series prect Method	$\bar{X}=\frac{\Sigma X}{N}$	$\bar{X}=$ Arithmetic Mean $\Sigma X=$ Summation of values of Variable X $N . .=$ Number of obseryations.
short-cut Method	$\bar{X}=A+\frac{\Sigma d}{N}$	$A=$ Assumed Mean Id = Sum of deviations of variables from assumed mean.
Stiep Deviation Method	$\bar{X}=A+\frac{\Sigma d^{\prime}}{N} \times C$	$\begin{aligned} & \Sigma \mathrm{d}^{\prime}=\text { Sum of step deviations } \\ & \mathrm{C}=\text { Common Factor } \end{aligned}$
Discrete Serles Direct Method	$\bar{x}=\frac{\Sigma f X}{\Sigma f}$	$\Sigma \mathrm{fX}=$ Sum of product of Variable $(\mathrm{X}$) and frequencies (f) If _- = Total of frequencies
Shor-cut Method	$\bar{X}=A+\frac{\Sigma f d}{\Sigma f}$	$\Sigma \mathrm{fd}=$ Sum of product of deviations (d) and respective frequencies. (f)
Step Deviation Method	$\bar{X}=A+\frac{\Sigma f^{\prime}}{\Sigma f} \times C$	$\Sigma \mathrm{fd}^{\prime}=$ Sum of product of step deviations (d^{\prime}) and respective frequencies.(f)
Continuous Series Drect Method	$\bar{X}=\frac{\Sigma f m}{\Sigma f}$	$m=$ Mid-Points $\Sigma \mathrm{fm}=$ Sum of product of midpoints (m) and frequencies (f)
Shol-cut Method	$\bar{X}=A+\frac{\Sigma f d}{\Sigma f}$	इfd = Sum of product of deviations (d) from mid-points with the respective frequencies (t).
Step Deviation Method	$\bar{X}=A+\frac{\Sigma f d^{\prime}}{\Sigma f} \times C$	$\Sigma \mathrm{fd}^{\prime}=$ Sum of product of step deviations (d^{\prime}) and frequencies (f)
2. Combined Mean	$\left(\bar{X}_{1,2}\right)=\frac{N_{1} \bar{X}_{1}+N_{2} \bar{X}_{2}}{N_{1}+N_{2}}$	$\begin{aligned} & \overline{\mathrm{X}}_{1,2}= \text { Combined Mean } \\ & \overline{\mathrm{X}}_{1}= \text { Arithmetic Mean of first } \\ & \text { distribution } \end{aligned}$
Welghted Mean	$\bar{X}_{w}=\frac{\Sigma W X}{\Sigma W}$	$\begin{aligned} & \bar{X}_{W}=\text { Weighted Mean } \\ & \Sigma W X=\text { Sum of product of items } \\ & \text { and respective weights } \end{aligned}$

MEASURES OF CENTRAL TENDENCY MEDIAN AND MODE

IEARNING OBJECTIVES

9.1 $\operatorname{NTRODUCTION}$
9.2 MEDIAN
9.3 COMPUTATION OF MEDIAN
9.4 MEDIAN IN SPECIAL CASES
9.5 GRAPHIC LOCATION OF MEDIAN
9.6 PROPERTIES OF MEDIAN
9.7 MEAN VS MEDIAN
9.8 MERITS AND DEMERITS OF MEDIAN
9.9 APPLICATIONS OF MEDIAN
8.10 QUARTILES
9.11 COMPUTATION OF QUARTILES
8.12 MODE
8.13 CALCULATION OF MODE
8.14 MODE IN SPECIAL CASES
8.15 MODE BY GRAPHICAL METHOD
8.16 RELATIONSHIP BETWEEN MEAN, MEDIAN AND MODE
8.17 MERITS AND DEMERITS OF MODE
8.18 COMPARISON BETWEEN MEAN, MEDIAN AND MODE
8.18 CALCULATION OF MEAN, MEDIAN AND MODE IN SPECIAL CASES

IVTRODUCTION
"Previous chapter, we discussed the concept of simple arithmetic mean and weighted

- such are mathematical in nature.
dir mathematical averages deal with those characteristics of a data set which can be
- However mured quantitatively.

1h ${ }^{\text {wever, at times, we need to measure qualitative characteristics of a distribution. }}$
Cases, the other measures of the central tendency are "Positional Average's

Meaning of Positional Average
Positional average determines the position of variables in the series. The positional averages have nothing to do with the sum of the values of the variable. As a result, they are least affected by the extreme items of the series. The various positional averages are shown in the following chart:

However, the present chapter focuses only on median and mode, in accordance with the CBSE syllabus. A brief reference of Quartiles is also given as its knowledge is important to understand the conceptor 'Quartile Deviation', discussed in the next chapter.
. 2 MEDIAN
Median may be defined as the middle value in the data set when its elements are arranged in a sequential order, that is, in either ascending or descending order of magnitude. Its value is
so located in a distribution that it divides it in half, with 50% items below it and 50% above it.

- It concentrates on the middle or centre of a distribution.
- Median is that positional value of the variable which divides the distribution into two equal parts:

One part comprises all values greater than or equal to the median value; and

- The other part comprises all values less than or equal to it.

In the words of Yule and Kendall, The median may be defined as the middle most value of the variable occur with equal frequency.

Example for Better Understanding: Suppose weight of 5 persons is $55,62,60,59,70 \mathrm{~kg}$. Now ${ }^{10}$ calculate the value of median, the first step is to arrange the data in the ascending (or descending)
order Arranging the weights in ascenting as it occuples the middle position.
s of Central Tendency - Median and Mode

Mean Vs Median

- Unlike arithm a series.

account the values of all items in

- For example, if the marks of five students are $40,42,50,55$ and 60 , the median value would be would still be 50 , though the two series students were $38,45,50,60$ and 70 , median reason, median is called a 'positional average'.
- The value of median is the value of the middle item irrespective of all other values. On the other hand, in case of arithmetic average values, of all items are taken into account
and that is why, it is a 'mathematical average'.

9.3 COMPUTATION OF MEDIAN

The median can be calculated in the ollowing types of distributions:

1. Individual Series
2. Discrete Series
3. Continuous Series

Individual Series
To calculate median in an individual series, the following steps are needed:
Step 1. Arrange the data in ascending order or descending order
Step 2. Apply the following formula: $\operatorname{Median}(\mathrm{Me})=\operatorname{Size}$ of $\left[\frac{\mathrm{N}+1}{2}\right]^{\text {th }}$
(Where, $N=$ Number of items)
Otd and Even Number of Items \qquad

- In case of odd number of items: Median = Middle item of distribution
- In case of even number of items: Median = Average of two middle items.

The following table will make the calculation of median more clear:
 items

Example: Marks of five students are 42, 40, 60, 55 and 50. Calculate Median.

Step 1: Marks Arranged in Ascending Order

40
 42 50 55
 60

Step 2. $\mathrm{Me}=$ Size of $\left[\frac{\mathrm{N}+1}{2}\right]^{\text {th }}$ item
Me $=$ Size of $\left[\frac{5+1}{2}\right]^{\text {th }}$ item $=$ Size of $3^{\text {rd }}$ item
Median $=\mathbf{5 0}$
Also refer Examples 1 and 2.

Example: Marks of six students are $42,40,60,55,50$
and 65 . Calculate Median.
step 1: Marks Arranged in Ascending Orde 40
42
50
55
60
65
Step 2. Me = Size of $\left[\frac{N+1}{2}\right]^{\text {th }}$ item
$\mathrm{Me}=$ Size of $\left[\frac{6+1}{2}\right]^{\text {th }}$ item $=$ Size of $3.5^{\text {th }}$ item
To get median, sum of $3^{\text {rd }}$ item and $4^{\text {th }}$ item is divide by 2 .

Median $=\frac{50+55}{2}=52.5$
Also refer Examples 3 and 4.

Example 1. Find out the median from the following data

120	200	170	800	620	350	375	640	750

Solution:

Calculation of Median

Caiculation of Median	
Serial No.	Items arranged in ascending order
1	120
2	170
3	200
4	350
5	375
6	620
7	640
8	750
9	800
$\mathbf{N}=9$	

Me $=$ Size of $\left[\frac{N+1}{2}\right]^{\text {th }}$ item $=$ Size of $\left[\frac{9+1}{2}\right]^{\text {th }}$ item $=$ Size of $5^{\text {th }}$ item $=375$
Ans. Median $=375$.
Ans. Median $=375$. This means that 50% of the items are are more than or equal to 375 .
sof Central Tendency - Median and Mode

$M e=$ Size of $\left[\frac{N+1}{2}\right]^{\text {th }}$ item $=$ Size of $\left[\frac{7+1}{2}\right]^{\text {th }}$ item $=$ Size of $4^{\text {th }}$ item $=490$
Ans. Median $=₹ 490$
Example 3. Given below is the age of some students. Find out the median of their age: 20,16 , 19, 14, 10, 22, 11, 9

Solution:	Calculation of Median	
Serial No.	Age arranged in ascending order	
1	9	
2	10	
3	11	
4	14	
5	16	
6	19	
7	20	
8		
$\mathbf{N}=8$		

The number of items is even, i.e. 8 .
$M_{\theta}=$ Size of $\left[\frac{N+1}{2}\right]^{\text {th }}$ item $=$ Size of $\left[\frac{8+1}{2}\right]^{\text {th }}$ item $=$ Size of $45^{\text {th }}$ item
To get medlan $4^{\text {th }}$ item and $5^{\text {th }}$ item is divided by 2 .
$M_{\theta \text { dian }}=\frac{\text { Size of } 4^{\text {th }} \text { item }+ \text { Size of } 5^{\text {th }} \text { item }}{14+16}=15$
Ans. Median = 15 years

Example 4.Calculate median from the following data: 245, 230, 265, 236, 220, 250

Solution:

Arranging these observations in ascending order of magnitude, we get: 220,230,236,245,250,265
The number of items is even, i.e. 6 .
$M e=$ Size of $\left[\frac{N+1}{2}\right]^{\text {th }}$ item $=$ Size of $\left[\frac{6+1}{2}\right]^{\text {th }}$ item $=$ Size of $3.5^{\text {th }}$ item
To get median, the sum of $3^{\text {rd }}$ item and $4^{\text {th }}$ item is divided by 2.
Median $=\frac{\text { Size of } 3^{r d} \text { item }+ \text { Size of } 4^{\text {th }} \text { item }}{2}=\frac{236+245}{2}=240.5$

Ans. Median $=240.5$

Discrete Series

In a discrete series, the values of the variable are given along with their frequencies.
Steps to Calculate Median
The steps involved are:
Step 1. Arrange the frequency distribution either in ascending or descending order;
Step 2. Denote variables (items) as X and frequency as f;
Step 3. Calculate the cumulative frequencies (c.f.);
Step 4. Find the Median item as: $(\mathrm{Me})=$ Size of $\left[\frac{\mathrm{N}+1}{2}\right]^{\text {th }}$ items
\{Where Me $=$ Median and $N=$ Total of frequency\} Step 5. Find the Value of $\left[\frac{N+1}{2}\right]^{\text {th }}$ items. It can be found by first locating the cumulative frequency which is equal to $\left[\frac{\mathrm{N}+1}{2}\right]^{\text {th }}$ or next higher to it and then determining the value corresponding to $i t$. This will be the value of the median
This can be made clear with the help of Examples 5, 6 and 7.
Example 5. Calculate the median from the following data:

Size (X)	Frequency (f)
3	2
4	1
5	3
6	7
7	4

Since $9^{\text {th }}$ item falls in the cumulative frequency 13 and the size against this cumulative frequency is 6 . Therefore, median is 6 .
Ans. Median $=6$
Example 6. Locate median of the following frequency distribution:

x	5	10	15	20	25	30	35	40
f	7	14	18	36	51	54	52	20

Solution:

Solution:	\boldsymbol{r}	\boldsymbol{f}
\mathbf{c} c.f.		
5	7	7
10	14	21
15	18	39
20	36	75
25	51	126
$\mathbf{3 0}$	54	$\mathbf{1 8 0}$ (Median Group)
35	52	232
40	$\mathbf{N}=\mathbf{\Sigma f}=\mathbf{2 5 2}$	252

$M_{\theta}=$ Size of $\left[\frac{N+1}{2}\right]^{\text {th }}$ item $=$ Size of $\left[\frac{252+1}{2}\right]^{\text {th }}$ item $=$ Size of $126.5^{\text {th }}$ item
Since $126.5^{\text {th }}$ item falls in the cumulative frequency of 180 and the size against this cumulative requency
${ }^{\text {is }} 30$. Therefore, median is 30
Ans. Median $=30$
Example 7. Calculate median from the following series:

Solution:
We first arrange the data in ascending order and in terms of cumulative frequency distribution

X	t	
10	3	3
11	12	15
12	18	33
13	12	45
14	3	48
	$N=\Sigma t=48$	

$\mathrm{Me}=$ Size of $\left[\frac{\mathrm{N}+1}{2}\right]^{\text {th }}$ item $=$ Size of $\left[\frac{48+1}{2}\right]^{\text {th }}$ item $=$ Size of $24.5^{\text {th }}$ item
Since $24.5^{\text {m }}$ item falis in the cumulative frequency of 33 and the size against this cumulative frequencol 12. Therefore, median is 12 .

Ans. Median = 12

Continuous Series

In case of continuous series, median cannot be located straight-forward. In this case, median lies in between lower and upper limit of a class-interval. To get the exact value of the median, we have to interpolate (estimate) median with the Kelp of a formula.
Steps to Calculate Median
The steps involved are:
Step 1. Arrange the data in ascending or descending order.
Step 2. Calculate the cumulative frequencies (c.f.).
Step 3. Find the Median $\left.i \frac{N}{2}\right]^{\text {th }}$ item.
Step 4. By inspecting cumulative frequencies, find out c.f. which is either equal to or just greater than this.
Step 5. Find the class corresponding to cumulative frequency equal to $\frac{\mathrm{N}}{2}$ or just greater than
this. This class is called median class. this. This class is called median class.
Step 6. Apply the following formula: $\mathrm{Me}=\mathrm{l}_{1}+\frac{\frac{\mathrm{N}}{2}-\text { c.f. }}{\mathrm{f}} \times \mathrm{i}$
〔Where, Me $=$ Median; $I_{1}=$ Lower limit of the medlan class; c.f. $=$ Cumulative frequency of the class preceding the median class; $f=$ Simple frequency of the median classi
$I=$ Class-Interval of the median group or class
Like mean, in median also, we have to assume that value in each class is unlformly distributed in the

Atientive in Continuous Series
be Atientive in Continuous Series
interval, i.e. between lower and upper limit of a class-interval.

- For calculating the exact value of median, it is assumed that the variable is continuous and there is orderly and evenly distribution of items within each class
- When first class becomes Median Class, then c.f. will be zero and other process for
- While computing the value of median, the middle item is $\left[\frac{N}{2}\right]^{\text {th }}$ item and not $\left[\frac{N+1}{2}\right]^{\text {th }}$ item.
- Median will have 50 percent of the frequencies on one side and the other 50 per cent on the other side.

Example 8. Find the median for the following data:

X	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
1	3	4	2	7	9

Soultion:

X	f	c.f.
$0-10$	3	3
$10-20$	4	7
$20-30$	2	9 (c.f.)
$\left(I_{1}\right) 30-40$	$7(f)$	16 Median Class
$40-50$	9	25
	$\mathbf{N}=\Sigma \mathbf{f f = 2 5}$	

Median $=\frac{\mathrm{N}}{2}=\frac{25}{2}=\underline{12.5}^{\text {th }}$ item
12.5 h item lies in the group 30-40
$l_{1}=30, c . f=9, f=7, i=10$
By applying formula:
Medlan $=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times 1=30+\frac{12.5-9}{7} \times 10=35$
Ans. Median $=35$

Solution:

Marks (X)	No. of Students (f)	c.f.
$10-20$	15	15
$20-30$	21	36
$30-40$	35	$71 \quad$ (c.f.)
$\left(\mathrm{l}_{1}\right) 40-50$	$52(f)$	123 Median Class
$50-60$	49	172
$60-70$	17	189
$70-80$	3	192
$80-90$	1	193
	$\mathrm{~N}=\Sigma \mathrm{Ef}=193$	
$\frac{N}{2}=\frac{193}{2}=96.5^{\text {th }}$ item		

$96.5^{\text {th }}$ item lies in the group 40-50

$\mathrm{l}_{1}=40$, c. $\mathrm{f} .=71, \mathrm{f}=52, \mathrm{i}=10$
By applying formula:
Median $=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times i=40+\frac{96.5-71}{52} \times 10=44.90$
Ans. Median $=44.90$ marks. This means that
marks and 50% of the students are getting more the students are getting less than or equal to 44.90 than or equal to this marks.
by students in a certain examination.

Marks	$40-50$	$30-40$	$20-30$	$10-20$	$0-10$
No. of Students	2	7	12	9	1
Solution:					

Solution:

$$
\begin{aligned}
& \text { 15.5" it item lies in the group 20-30 } \\
& l_{1}=20, c . f .=10, f=12, i=10
\end{aligned}
$$

rres of Central Tendency - Median and Mode
By applying formula:

$$
\text { Median }=1_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times i=20+\frac{15.5-10}{12} \times 10=24.58 \text { Marks }
$$

Ans. Median $=24.58$ marks
Example 11.Calculate the value of median from the following frequency distribution.

Madks $($ X)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. St Students (f)	8	30	40	12	10

Solution:

Marks (X)	No. of Students (f)	c.f.
$0-10$	8	8
$10-20$	30	$\mathbf{3 8}$ (c.f.)
$\left(\mathbf{l}_{1}\right) 20-30$	$\mathbf{4 0}(\mathbf{f})$	78 Median Class
$30-40$	12	90
$40-50$	10	$\mathbf{1 0 0}$
	$\mathbf{N}=\mathbf{\Sigma f}=\mathbf{1 0 0}$	

$M e=\frac{N}{2}=\frac{100}{2}=50^{\text {th }}$ item
$50^{\text {h }}$ item lies in the group 20-30
$l_{1}=20$, c.f. $=38, f=40, i=10$
By applying formula:
Median $=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times i=20+\frac{50-38}{40} \times 10=23$
Ans. Median $=23$ Marks
9.4 MEDIAN IN SPECIAL CASES

The calculation process of Median is
hese specion process of Median is different under some special circumstances. Let us discuss
special cases:

[^0]: Ans. Average marks $=13.50$

