eumulative Series ('Less than' or 'More than')
When the data is given in the form of "Less than" or "More than" for all items in the series, then such data has to be converted into a simple frequency distribution, in order to find out the frequency of the median class. Once it is done, the rest of the procedure is the same as in any other continuous series.
Examples 12, 13 and 14 would Illustrate the calculation of median in 'less than' and 'more than'series.
Example 12. Calculate the median from the following data:

| Marks | No. of Students |
| :---: | :---: |
| Less than 5 | 4 |
| Less than 10 | 10 |
| Less than 15 | 20 |
| Less than 20 | 30 |
| Less than 25 30 | 55 |
| Less than 35 | 77 |
| Less than 40 | 95 |

## Solution:

Since we are given the cumulative frequencies, we first find the simple frequency.

| Marks $(X)$ | No. of Students $(f)$ | c.f. |
| :---: | :---: | :---: |
| $0-5$ | 4 | 4 |
| $5-10$ | 6 | 10 |
| $10-15$ | 10 | 20 |
| $15-20$ | 10 | $30 \quad$ (c.f.) |
| $\left(I_{1}\right) 20-25$ | $25(f)$ | 55 Median Class |
| $25-30$ | 22 | 77 |
| $30-35$ | 18 | 95 |
| $35-40$ | 5 | 100 |

$\mathrm{Me}=\frac{\mathrm{N}}{2}=\frac{100}{2}=50^{\text {th }}$ item
$50^{\text {th }}$ item lies in the group 20-25
$\mathrm{l}_{1}=20, \mathrm{c} . \mathrm{f}=30, \mathrm{f}=25, \mathrm{i}=5$
By applying formula:
$\mathrm{Me}=\mathrm{I}_{1}+\frac{\frac{\mathrm{N}}{2} \text { - c.f. }}{\mathrm{f}} \times \mathrm{i}=20+\frac{50-30}{25} \times 5=24$
Ans. Median = 24

Yeasures ol Central Tondency Modian and Mode

| Example 13. Find out the median for the following data: |
| :--- |
| $\qquad$Age (in years)  <br> $10-20$ No. of Persons <br> $10-30$ 8 <br> $10-40$ 32 <br> $10-50$ 54 <br> $10-60$ 58 <br> $10-70$ 68 |

Solution:
In the given example, the data is given in the form of cumulative series. So, it will be first converted into simple series to find the frequency of the median class.

| Age in years $(X)$ | No. of Persons (f) | o.f |
| :---: | :---: | :---: |
| $10-20$ | 8 | 8 |
| $20-30$ | 24 | 32 (g.t.) |
| $\left(I_{1}\right) 30-40$ | $22(f)$ | 54 |
| $40-50$ | 4 | 58 |
| $50-60$ | 8 | 66 |
| $60-70$ | 14 | 80 |
|  | $\mathbf{N}=\mathbf{\Sigma f}=80$ |  |

$M_{\theta}=\frac{N}{2}=\frac{80}{2}=40^{\text {th }}$ item
$40^{\text {th }}$ item lies in the group $30-40$
$l_{1}=30$, c.f. $=32, f=22, i=10$
By applying formula:

$$
M_{e}=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times i=30+\frac{40-32}{22} \times 10=33.63 \text { years }
$$

Ans. Median $=33.63$ years

| Example 14. Find the median of the following data: |
| :--- |
| Age in years (Greater than) |
| No. of Persons |

Solution:
.
simple freq it is 'more than' type frequency distribution. We will first convert

| Simple frequencies. | No. of Persons (f) | c.f. |
| :---: | :---: | :---: |
| Age (in yrs) | 12 | 12 |
| $0-10$ | 18 | 30 |
| $10-20$ | 35 | 65 |
| $20-30$ | 42 | 107 (c.f.) |
| $30-40$ |  |  |

$9.14 \quad$ Statistics for $C_{\text {lass } x}$

| $\left(I_{1}\right) 40-50$ | 50 (f) | 157 Median Clasg |
| :---: | :---: | :---: |
| $50-60$ | 45 | 202 |
| $60-70$ | 20 | 222 |
| $70-80$ | 8 | 230 |
|  | $\mathbf{N}=\mathbf{\Sigma f}=\mathbf{2 3 0}$ |  |

$M_{e}=\frac{N}{2}=\frac{230}{2}=115^{\text {th }}$ item
$115^{\text {th }}$ Item lies in the group 40-50
$I_{1}=40, c . f=107, f=50, i=10$
By applying formula:
$M e=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times i=40+\frac{115-107}{50} \times 10=41.6$ year
Ans. Median $=41.6$ years
Mid-Values are given
When the mid-values of class-intervals are given, then the class-intervals are found, i.e.t calculate median, we need to first convert it into continuous series.

Steps to convert Mid-value Series to Continuous Series
Step 1: First of all, calculate the difference between the two mid-values.
Step 2: Then, half of the difference is subtracted and added to each mid-value to find the lower and upper limits respectively of the class-intervals

## Refer Example 15 for better understanding.

Example 15. Compute median from the following data:

| Mid-Points | 115 | 125 | 135 | 145 | 155 | 165 | 175 | 185 | 195 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 6 | 25 | 48 | 72 | 116 | 60 | 38 | 22 | 3 |
| Solution: |  |  |  |  |  |  |  |  |  |

## Solution:

In the given example, we are given the mid-values. We need to first convert it into continuous series.
Step 1: The difference between the two mid-values is 10
Step 2: Half of the difference is: $\frac{10}{2}=5$. Now, 5 is reduced and added to each mid-value to determine ${ }^{\text {the }}$ lower limit and upper limit.
It is shown in the following table:
Computation of Median

| Computation of Median |  |  |
| :---: | :---: | :---: |
| Marks | $f$ | c.f. |
| $110-120$ | 6 | 6 |
| $120-130$ | 25 | 31 |

of Central Tendency - Median and Mode

| 9.15 |  |  |
| :---: | :---: | :---: |
| $130-140$ | 48 | 79 |
| $140-150$ | 72 | $151 \quad$ (c.f.) |
| $\left(\mathbf{I}_{1}\right) 150-160$ | 116 (f) | $267 \quad$ Median Class |
| $160-170$ | 60 | 327 |
| $170-180$ | 38 | 365 |
| $180-190$ | 22 | 387 |
| $190-200$ | $\mathbf{N}=\mathbf{\Sigma t}=\mathbf{3 9 0}$ | 390 |

$M e=\frac{N}{2}=\frac{390}{2}=195^{\text {th }}$ item
$195^{\text {th }}$ item lies in the group 150-160
$l_{1}=150$, c.f. $=151, f=116, i=10$
By applying formula:
$M e=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times i=150+\frac{195-151}{116} \times 10=153.79$
Ans. Median $=153.79$
Inclusive Class-Intervals
While calculating median in a continuous series with inclusive class-intervals, it is necessary to convert the series into an exclusive class-interval series.
Steps to convert Inclusive Series into an Exclusive Series
Step 1. Find the difference between the upper limit of a class-interval and lower limit of the next class-interval.
Step 2. Add hass-interval. this difference to the uppe-interval. This procedure fills up the gap between
half from the lower limit of each class-interval classes.
two classes and thereby we get the exclusive classes
This will be clear from Example 16.
Example 16. Compute median from the following data:

Solution:
This is a case of inclusive class-intervals. To calculate median, it should be made exclusive and arranges
in the ascending order, as follows:

| Daily Wages (₹) | Frequency (f) | c.f. |
| :---: | :---: | :---: |
| $49.5-59.5$ | 15 | 15 |
| $59.5-69.5$ | 40 | 55 |
| $69.5-79.5$ | 50 | $105 \quad$ (c.i.) |
| $\left(\mathrm{I}_{1}\right) 79.5-89.5$ | $60 \quad$ (f) | $165 \quad$ Median Class |
| $89.5-99.5$ | 45 | 210 |
| $99.5-109.5$ | 40 | 250 |
| $109.5-119.5$ | 15 | 265 |
|  | $\mathrm{~N} \Sigma \mathbf{I f}=\mathbf{2 6 5}$ |  |

$M e=\frac{\mathrm{N}}{2}=\frac{265}{2}=132.5^{\text {th }}$ item
$132.5^{\text {th }}$ tem lies in the group 79.5-89.5
$\mathrm{l}_{1}=79.5$, c.f. $=105, \mathrm{f}=60, \mathrm{i}=10$
By applying formula:
$M e=I_{1}+\frac{\frac{N}{2} \text {-c.f. }}{f} \times i=79.5+\frac{132.5-105}{60} \times 10=₹ 84.08$
Ans. Median $=₹ 84.08$
Open-End Series
In case of open-end classes, the lower limit of the first class and upper limit of the last class is not given. Median is known to be the best average in open-end class-interval series. In this case, there is no need to complete the class-interval and formula also remains the same
Example 17 would illustrate the point.
Example 17. Calculate the value of median from the following distribution:

| Marks $(X)$ | Below 10 | $10-20$ | $20-30$ | $30-40$ | 40 and Above |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. of Students (f) | 3 | 13 | 18 | 11 | 5 |
| Solution: |  |  |  |  |  |

## Solution.

The given data consist of open-end classes. However, to calculate the median, there is no need to complele the class-interval.

| Marks ( $X$ ) | No. of Students (f) | c.f. |  |
| :---: | :---: | :---: | :---: |
| Below 10 | 3 |  |  |
| $\left(\mathrm{I}_{1}\right) 20-30$ | 13 |  | (c.1.) |
| 30-40 | 18 (f) |  | Media |
| 40 and Above | 11 | 45 |  |
|  | 5 | 50 |  |
|  | $\mathrm{N} \mathbf{\Sigma f}=\mathbf{5 0}$ |  |  |

$$
\text { Median }=\frac{N}{2}=\frac{50}{2}=25^{\text {tI }} \text { item }
$$

$25^{\text {th }}$ item lies in the group 20-30
$h_{1}=20$, c.f. $=16, f=18, i=10$
By applying formula:
Median $=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times i=20+\frac{25-16}{18} \times 10=25$ Marks
Ans. Median $=25$ Marks
Unequal Class-Intervals
When the class-intervals are unequal, there is no need to make the class-interoals equal. The requencies need not be adjusted and the same formula will be applied as discussed before.
This will be clear from the following example.
Example 18. Calculate the median of the following distribution of data:

| Class-interval | $0-10$ | $10-30$ | $30-60$ | $60-80$ | $80-90$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 5 | 15 | 30 | 8 | 2 |

Solution:
In this question, the class intervals are unequal. However, to calculate median, there is no need to make class-intervals equal.

| class-intervals equal. |  |  |  | Frequency $(f)$ | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Class-interval $(X)$ | 5 | 20 (c.t.) |  |  |  |
| $0-10$ | 15 | 50 Median Class |  |  |  |
| $10-30$ | $30(f)$ | 58 |  |  |  |
| $\left(I_{1}\right) 30-60$ | 8 | 60 |  |  |  |
| $60-80$ | 2 |  |  |  |  |
| $80-90$ | $\mathrm{~N} \Sigma \mathrm{f}=60$ |  |  |  |  |

Medlan $=\frac{N}{2}=\frac{60}{2}=30^{\text {th }}$ item
${ }^{30}$ ih item lies in the group 30-60
$t=30, c . f=20, f=30, i=30$
By applying formula

$$
\begin{aligned}
& \text { Medlan }=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times 1=30+\frac{30-20}{30} \times 30=400 . \text { Median } \\
& n_{8 .}
\end{aligned}
$$

SUMMARY OF MEDIAN IN SPECIAL CASES
 Distribution and ther calculate Median in usual manner. Marks Less Less Less Less Less Students than 10 than 20 than 30 than 40 than 50 Students

| Marks $(\boldsymbol{X})$ | Students $(f)$ | 16 |
| :---: | :---: | :---: |
| $0-10$ | 3 | 25 |
| $10-20$ | 4 | 3 |
| $20-30$ | 2 | 7 |
| $30-40$ | 7 | 9 |
| $40-50$ | 9 | 16 |
|  | $\mathrm{~N}=\Sigma \mathrm{f}=25$ | 25 |

$\mathrm{Me}=\frac{\mathrm{N}}{2}=\frac{25}{2}=12.5^{\mathrm{h}}$ item; $12.5^{\mathrm{tr}}$ item lies in group $30-40$

## 15 300 c. $=9 \quad t=7 \quad i=10$

$M e=I_{1}+\frac{N / 2-c \text { c.f }}{f} \times i=30+\frac{12.5-9}{7} \times 10=35$ Marks


| Class-Intervals $(X)$ | Frequency (f) | c.f. |
| :---: | :---: | :---: | :---: |
| $0-10$ | 10 | 10 |


| CASE <br> (More <br> Distribu | 1b:Cum Than Series on and th | ulative <br> s): Conv <br> a calcul | requen <br> it into $S$ <br> te Media | y Distrit mple Frequ | $\begin{aligned} & \text { tibution } \\ & \text { eqquem } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Marks | More | More |  | in usual mi |  |
|  | than 10 | $\text { than } 20$ | More | More |  |
| Students | 30 | 24 |  | than 40 |  |
| Marks |  |  |  | 11 |  |
| $10-$ |  | Sud | (f) |  |  |
|  |  | 6 |  |  |  |
| $20-$ |  | 8 |  |  | ${ }^{6}$ |
| $30-$ |  | 5 |  |  | 14 |
| 40 |  | 7 |  |  | 19 |
| 50 |  |  |  |  | 26 |
|  |  | $\mathrm{N}=\Sigma \mathrm{f}$ | 30 |  | 30 |

$\mathrm{Me}=\frac{\mathrm{N}}{2}=\frac{30}{2}=15^{\mathrm{th}}$ item; $15^{\mathrm{th}}$ item lies in group $30-40$

## $4=30$ c $f=14 \quad\{=5 \quad\{=10$

$M e=I_{1}+\frac{N / 2-c . f}{f} \times i=30+\frac{15-14}{5} \times 10=32$ Marks
CASE 3: Inclusive Class-Intervals (Classes of 10-19, 20-29 are given): Convert Inclusive Class-nhen into Exclusive Series.

Class-Intervals $10-19$ 20-29 $30-3940-49 \begin{array}{llll}50-50\end{array}$ | Frequency | 3 | 9 | 8 | 7 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Class-Intervals $(X)$ | Frequency $(f)$ | c.f. |
| :--- | :--- | :--- |


| $9.5-19.5$ | 3 | c.1. |
| ---: | :---: | ---: |
| $19.5-29.5$ | 9 | 3 |
| $29.5-39.5$ | 8 | 12 |
| $39.5-49.5$ | 7 | 20 |
| $49.5-59.5$ | 13 | 27 |
|  | $\mathrm{~N}=\Sigma \mathrm{f}=40$ | 40 |

$M e=\frac{N}{2}=\frac{90}{2}=45^{\mathrm{th}}$ item; $45^{\mathrm{tr}}$ item lies in group $20-30$

## $0=20 \quad c f=30 \quad t=30 \quad 1=10$

$M e=I_{1}+\frac{N / 2-c \text { c.f }}{f} \times i=20+\frac{45-30}{30} \times 10=25$
CASE 4: Open-End Series (Lower limit of first class and upper limit of last class not given): There is no need to find

missing limits, i.e. calculate Class-Intervals Less $40-50$ nosual manner. Frequency than 40 40-50 50-60 60-70 More | Frequency | 4 | 7 | 6 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |

| Class-Intervals $(X)$ | Frequency (f) | c.f. |
| :---: | :---: | :---: |
| Less than 40 | 4 | 4 |
| $40-50$ | 7 | 11 |
| $50-60$ | 6 | 17 |
| $60-70$ | 5 | 22 |
| More than 70 | 6 | 28 |
|  | $\mathrm{~N}=\Sigma \mathrm{f}=28$ |  |

$M e=\frac{\mathrm{N}}{2}=\frac{28}{2}=14^{\text {th }}$ item; $14^{\text {th }}$ item lies in group $50-60$

$M e=I_{1}+\frac{N / 2-c . f}{f} \times i=50+\frac{14-11}{6} \times 10=55$
calculation of Missing Frequencies frequency.
Steps to Determine Missing Frequency
Step 1. Represent missing frequencies by $f_{1}$ or $f_{2}$ as the case may be.
Step 2. Apply the formula for calculation of median. In this process, we get an equation which gives us the missing frequencies.
Examples 19 and 20 would clarify the procedure.
Example 19. The following tablegives the distribution of monthly salary of 900 employees However, the frequencies of the classes $40-50$ and $60-70$ are missing. If the median of the distribution is ₹ 59.25 , find the missing frequencies.

| Salaries(₹ in '000) | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No.0f Employees | 120 | $?$ | 200 | $?$ | 185 |

Solution:
Let $f_{1}$ and $f_{2}$ be the frequencies of the classes $40-50$ and $60-70$ respectively.

| Salaries (₹ in '000) $(X)$ | No. of Employees ( $(\boldsymbol{\prime})$ | c.f. |
| :---: | :---: | :---: |
| $30-40$ | 120 | 120 |
| $40-50$ | $f_{1}$ | $120+\mathrm{f}_{1}$ |
| $50-60$ | 200 | $320+\mathrm{f}_{1}$ |
| $60-70$ | $\mathrm{f}_{2}$ | $320+\mathrm{f}_{1}+\mathrm{f}_{2}$ |
| $70-80$ | 185 | 900 |
| $\mathbf{N \Sigma f = 9 0 0}$ |  |  |

Median $=\frac{N}{2}=\frac{900}{2}=450^{\text {th }}$ item

$\mathrm{I}_{1}=50, \mathrm{c} . \mathrm{f}=120+\mathrm{f}_{1}, \mathrm{f}=200, \mathrm{i}=10$
Median $=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times i$
$59.25=50+\frac{450-\left(120+f_{1}\right)}{200} \times 10$
${ }^{59.25}=50+\frac{450-\left(120+\mathrm{f}_{1}\right)}{200 \div 10}$
$9.25 \times 20=330-f_{1}$
$f_{1}=145$
$t_{1}=145$
${ }^{\text {From }}{ }^{120}+t_{1}$ summation of frequencies, we have:
${ }^{120}+\mathrm{f}_{1}+200+\mathrm{f}_{2}+185=900$

Putting the value of $f_{1}$, we get:
$120+145+200+\mathrm{f}_{2}+185=900$
i.e. $\mathrm{f}_{2}=250$

Ans. Frequency of class 40-50 $\left(f_{1}\right)=145$; Frequency of class 60-70 $\left(f_{2}\right)=250$
Example 20. An incomplete distribution is given below:

| Marks | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Students | 24 | 60 | $?$ | 130 | $?$ | 50 | 36 | 458 |

You are given that the median value is 47 . Using the median formula, fill up missing frequencies
Solution:
Let $f_{1}$ and $f_{2}$ be the frequencies of the classes $30-40$ and 50-60 respectively.

| Marks $(X)$ | No. of Students $(f)$ | c.f. |
| :---: | :---: | :---: |
| $10-20$ | 24 | 24 |
| $20-30$ | 60 | 84 |
| $30-40$ | $f_{1}$ | $84+f_{1}$ |
| $40-50$ | 130 | $214+f_{1}$ |
| $50-60$ | $\mathrm{f}_{2}$ | $214+\mathrm{f}_{1}+\mathrm{f}_{2}$ |
| $60-70$ | 50 | $264+\mathrm{f}_{1}+\mathrm{f}_{2}$ |
| $70-80$ | 36 | 458 |

Median $=\frac{N}{2}=\frac{458}{2}=229^{\text {th }}$ item
229 ${ }^{\text {th }}$ item lies in the group $40-50$ (Given median $=47$ )
$l_{1}=40$, c.f. $=84+f_{1}, f=130, i=10$
$M e=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times i$
$47=40+\frac{229-\left(84+f_{1}\right)}{130} \times 10$
$47=40+\frac{229-\left(84+f_{1}\right)}{130 \div 10}$
$7 \times 13=145-f_{1}$
$f_{1}=54$
From summation of frequencies, we have:
$24+60+f_{1}+130+f_{2}+50+36=458$
Putting the value of $f_{1}$, we gei:
$24+60+54+130+f_{2}+50+36=458$
i.e. $f_{2}=104$

Ans. Frequency of class $30-40\left(f_{1}\right)=54$; Frequency of class $50-60\left(f_{2}\right)=104$

Megsures of Central Tendency - Median and Mode
9. 5 GRAPHIC LOCATION OF MEDIAN
vedian can be easily located graphicaly with help of Ogives (cumulative frequency curve). This car be (ii) 'Less than' or 'More than' Ogive Method. wethod; (ii)
Less than' and 'More than' Ogive Method
step 1. Draw two ogives (one 'less than' an one 'more than') from the given data.
step 2 . From the point of intersection the two ogives, draw a line parallel to the $Y$-axis. The point where the line cuts the X -axis, is the Median value.
The following example will make this method more clear.
Example 21 . Determine the median graphically from the data given below:

| Example | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Students | 3 | 9 | 18 | 30 | 18 | 12 |

Solution:
In order to calculate median by 'Less than' and 'More than' ogive method, we have to convert the series in cumulative frequency of 'less than' and 'more than' series.

| Marks | No. of Students | Marks | No. of Students |
| :---: | :---: | :---: | :---: |
| Less than 10 | 3 | More than 0 | 90 |
| Less than 20 | 12 | More than 10 | 87 |
| Less than 30 | 30 | More than 20 | 78 |
| Less than 40 | 60 | More than 30 | 60 |
| Less than 50 | 78 | More than 40 | 30 |
| Less than 60 | 90 | More than 50 | 12 |

On the basis of tables of 'less than' and 'more than', two Ogive curves are drawn:


From the point of intersection (point E ), a perpendicular (dotted line in the figure) is drawn on the $X$-axis. The dotted line cuts the $X$-axis at 35 . Hence the median is 35 marks.
Ans. Median = 35 Marks
ss than' or 'More than' Ogive Method
In this method, the frequency distribution is converted into either a 'less than' or 'more than cumulative series, so as to draw the Ogive. The median is determined from the Ogive so drawn Step 1. Draw only one ogive: Either by 'less than' method or by 'more than' method.
Step 2. Plot the values of the variable on X -axis and the cumulated values (less than) on the Y-axis.
Step 3. Find the Median item as: $(\mathrm{Me})=$ Size of $\left[\frac{N}{2}\right]^{\text {th }}$ item
\{Where Me = Median and $N=$ Total of frequency
Step 4. Locate the median item on the Y -axis and from this draw a line parallel to the X -axis to intersect the ogive.
Step 5. Draw a perpendicular line from this point of intersection on the $X$-axis. The point where the line cuts the X -axis, is the Median value.
Let us understand this with the help of Example 22 (less than' Ogive) and Example 23 ('more than' Ogive).
Example 22. Determine the value of median graphically by 'less than' ogive with the information given in Example 21.
Solution:
In order to calculate median by 'Less than' ogive method, we have to convert the series in cumulative frequency of 'less than' series.

| Marks | No. of Students |
| :---: | :---: |
| Less than 10 | 3 |
| Less than 20 | 12 |
| Less than 30 | 30 |
| Less than 40 | 60 |
| Less than 50 | 78 |
| Less than 60 | 90 |

On the basis of table of 'less than', one Ogive curve is drawn:

$$
M e=\frac{N}{2}=\frac{90}{2}=45^{t h} \text { item }
$$



Locating 45 on the $Y$-axis and a parallel line from 45 (dotted line in the figure) intersects the ogive at point $E$. Now, a perpendicular line drawn from point $E$ cuts the $X$-axis at 35 . Hence the median is 35 marks. Ans. Median = $\mathbf{3 5}$ Marks

Measures of Central Tendency - Median and Mode
Example 23. Determine the value of median graphically by 'more than' ogive with the information given in Example 21.

Solution:
In order to calculate median by 'More In an' ogive method, we have to convert the series in cumulative frequency of 'more than' series.

| Marks | No. of Students |
| :---: | :---: |
| More than 0 | 90 |
| More than 10 | 87 |
| More than 20 | 78 |
| More than 30 | 60 |
| More than 40 | 30 |
| More than 50 | 12 |

On the basis of table of 'more than', one Ogive curve is drawn:
$M_{e}=\frac{N}{2}=\frac{90}{2}=45^{\text {th }}$ item


Locating 45 on the Y -axis and a parallel line from 45 (dotted line in the figure) intersects the ogive at point E . Now, a perpendicular line drawn from point $E$ cuts the $X$-axis at 35 . Hence the median is 35 marks. Ans. Median = 35 Marks

### 9.6 PROPERTIES OF MEDIAN

$\qquad$

1. The sum of deviations of items from median, ignoring signs, is the minimum. For example, the median of $4,6,8,10,12$ is 8 . Now, deviations from 8 (Ignoring signs) are 2, 4. The total of these deviations is 12 . This total i smaller hha he devitions ignoring signs would be taken from any other value. If deviations are taken from 7 , the dovia is centally located.
$3,1,1,3,5$ and the total 13 . This property implies that medianis con the the extreme values.
2. Median is a positional average and hence it is not influenced by the extreme values.

### 9.7 MEAN VS MEDIAN

$\qquad$

1. Ease in Calculations: Median is easier to calculate as compling affect the median to a greater
2. Fluctuations in Sample: The general fluctuations of sampling a might be affected to a greater extent by such extent than the mean (however, at times uations than the median).
3. Algebraic Treatment: Mean is definitely superior to median ut not the combined median.
treatment. It is possible to find out the combined mean, of open-end distribution, whereas,
4. Open-end cars: Mean cannot be determined in case of open-end
median can be easily calculated.

Arrangement required: Since median data in ascending or descending order of magnitude position, therefore arranging the number of observations.
5. Unrealistic assumption in case of grouped distribution: The formula for the computation of median, in case of grouped frequency distribution, is based on the ossumptiontation observations in the median class are uniformly distributed. This assumption is rarely met in practice.


### 9.9 APPLICATIONS OF MEDIAN

The median is helpful in understanding the characteristic of a data set when:

1. Observations are qualitative in nature;
2. Extreme values are present in the data set;
3. A quick estimate of an average is desired.

### 9.10 QUARTILES



Medians a value which splits the series in two equal parts. Similarly, there are other positional values, which divide a series in a number of parts. The most common positional values besides
median are Quartiles.
Quartiles divide a series into four equal parts. For any series, there will be three quartiles as shown by the following figure:


1. First or Lower Quartile $\left(Q_{1}\right)$ : $Q_{1}$ divides the distribution in such a way that one-fourth $(25 \%)$ of total items fall below it and three-fourth ( $75 \%$ ) fall above it.
2. Second Quartile $\left(\mathrm{Q}_{2}\right)$ or Median: It has already been discussed.
3. Third or Upper Quartile $\left(Q_{3}\right): Q_{3}$ divides the distribution in such a way that three-fouth
( $75 \%$ ) of total items fall below it and one-fourth ( $25 \%$ ) fall above it.

## Percentiles - For Knowledge Enrichment

1. The percentile values divide the distribution into 100 parts each containing 1 per cent of the observations.
2. There are, in all, 99 percentiles denoted as $P_{1}, P_{2}, \ldots \ldots \ldots \ldots \ldots . P_{99}$ respectively. $P_{50}$ is the median value.
3. If you have secured 60 percentile in an examination, it means that your position is below 40 percent of total candidates appeared in the examination.

### 9.11 COMPUTATION OF QUARTILES

The computation of quartiles is done exactly in the same manner as the computation of the Median. While calculating $Q_{1}$ and $Q_{3}$ the series have to be arranged in ascending or descending order as in case of median.

Individual Series
In case of individual fries, the values of lower quartile $\left(\mathrm{Q}_{1}\right)$ and upper quartile $\left(\mathrm{Q}_{3}\right)$ would be the size of $\left[\frac{N+1}{4}\right]$ and $3\left[\frac{N+1}{4}\right]^{\text {th }}$ item respectively.

Example 24. From the data given below, calculate lower quartile $\left(\mathrm{Q}_{1}\right)$ and upper quartile $\left(\mathrm{Q}_{3}\right)$ :

| Pocket money (in $₹$ ) | 46 | 35 | 28 | 52 | 54 | 43 | 35 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Solution:


| Calculation of Lower Quartile $\left(\mathbf{Q}_{\mathbf{1}}\right)$ and Upper Quartile $\left(\mathbf{Q}_{\mathbf{3}}\right)$ |  |
| :---: | :---: |
| S. No. | Pocket money (in ₹) arranged in ascending order |
| 1 | 28 |
| 2 | 35 |
| 3 | 35 |
| 4 | 41 |
| 5 | 43 |
| 6 | 46 |
| 7 | 46 |
| 8 | 49 |
| 9 | 50 |
| 10 | 52 |
| 11 | 54 |
| $\mathbf{N}=\mathbf{1 1}$ |  |

Measures of Central Tendency - Median and Mode
calculation of Lower Quartile $\left(\mathbf{Q}_{\mathbf{1}}\right)$
$Q_{1}=$ Size of $\left[\frac{N+1}{4}\right]^{\text {th }}$ item $=$ Size of $\left[\frac{11+1}{4}\right]^{\text {th }}$ item $=$ Size of 3rd item 9.27

$$
Q_{1}=₹ 35
$$

Calculation of Upper Quartile $\left(\mathbf{Q}_{3}\right)$

$$
\begin{aligned}
& Q_{3}=\text { Size of } 3\left[\frac{N+1}{4}\right]^{\text {th }} \text { item = Size of } 3\left[\frac{11+1}{4}\right]^{\text {th }} \text { item }=\text { Size of } 9^{\text {th }} \text { item } \\
& Q_{3}=₹ 50
\end{aligned}
$$

Ans. Lower Quartile $\left(Q_{1}\right)=₹ 35$; Upper Quartile $\left(Q_{3}\right)=₹ 50$
Example 25. Calculate first quartile and third quartile from following data:

| Marks of Students | 60 | 38 | 46 | 43 | 50 | 58 | 65 | 69 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Solution:

Arranging marks in ascending order, we get: 38, 43, 46,50,58,60,65, 69

## Calculation of Lower Quartile $\left(\mathbf{Q}_{\mathbf{1}}\right)$

$$
Q_{1}=\text { Size of }\left[\frac{N+1}{4}\right]^{\text {th }} \text { item }=\text { Size of }\left[\frac{8+1}{4}\right]^{\text {th }} \text { item }=\text { Size of } 2.25^{\text {th }} \text { item }
$$

$$
\text { Size of } 2.25^{\text {th }} \text { item }=\text { Size of } 2^{\text {nd }} \text { item }+.25 \text { times (Size of } 3^{\text {rd }} \text { item }- \text { Size of } 2^{\text {nd }} \text { item) }
$$

Size of $2.25^{\text {th }}$ item $=43+.25(46-43)=43+.75=43.75$
$Q_{1}=43.75$ Marks

## Calculation of Upper Quartile ( $\mathbf{Q}_{\mathbf{3}}$ )

$Q_{3}=$ Size of $3\left[\frac{N+1}{4}\right]^{\text {th }}$ item $=$ Size of $3\left[\frac{8+1}{4}\right]^{\text {th }}$ item $=$ Size of $6.75^{\text {th }}$ item
Size of $6.75^{\text {th }}$ item $=$ Size of $6^{\text {th }}$ item +.75 times (Size of $7^{\text {th }}$ item - Size of $6^{\text {th }}$ item)
Size of $6.75^{\text {th }}$ item $=60+.75(65-60)=60+.75(5)=63.75$
$Q_{3}=63.75$ marks
Ans. Lower Quartile $\left(Q_{1}\right)=43.75$ marks; Upper Quartile $\left(Q_{3}\right)=63.75$ marks
${ }^{\text {Discrete }}$ Series
${ }^{I}$ case of discrete
be the Size of $\left[\frac{N+1}{4}\right]^{\text {th }}$ and $3\left[\frac{N+1}{4}\right]^{\text {th }}$ items respectively. However, for value of $N$, the cumulative
frequency $\left[\begin{array}{l}4\end{array}\right]$
The following example will illustrate this.

Example 26. From the following, compute $Q_{1}$ and $Q_{3}$.

| $\boldsymbol{x}$ | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f$ | 2 | 3 | 5 | 10 | 5 | 3 | 2 |

## Solution:

We first calculate the cumulative frequency:

| $\boldsymbol{x}$ | $\boldsymbol{f}$ | c.f. |
| :---: | :---: | :---: |
| 10 | 2 | 2 |
| 20 | 3 | 5 |
| 30 | 5 | 10 |
| 40 | 10 | 20 |
| 50 | 5 | 25 |
| 60 | 3 | 28 |
| 70 | 2 | 30 |
|  | $\mathbf{N}=\mathbf{\Sigma t = 3 0}$ |  |

## Calculation of Lower Quartile ( $\mathbf{a}_{\mathbf{1}}$ )

$Q_{1}=$ Size of $\left[\frac{N+1}{4}\right]^{\text {th }}$ item $=$ Size of $\left[\frac{30+1}{4}\right]^{\text {th }}$ item $=$ Size of $7.75^{\text {th }}$ item
$7.75^{\text {th }}$ item falls in the cumulative frequency of 10 and the size against this cumulative frequency is 30 Therefore, $\mathrm{Q}_{1}$ is 30 .

## Calculation of Upper Quartile ( $\mathrm{a}_{3}$ )

$$
\mathrm{Q}_{3}=\text { Size of } 3\left[\frac{\mathrm{~N}+1}{4}\right]^{\text {th }} \text { item }=\text { Size of } 3\left[\frac{30+1}{4}\right]^{\text {th }} \text { item }=\text { Size of } 23.25^{\text {th }} \text { item }
$$

$23.25^{\text {th }}$ item falls in the cumulative frequency of 25 and the size against this cumulative frequency is 50 . So, $Q_{3}$ is 50 .
Ans. Lower Quartile $\left(Q_{1}\right)=30$; Upper Quartile $\left(Q_{3}\right)=50$

## Continuous Series

In case of continy series, the lower quartile $\left(Q_{1}\right)$ is the $\left[\frac{N}{4}\right]^{\text {th }}$ item and the exact value of $Q_{1}$ is calculated by the following formula:

$$
Q_{1}=I_{1}+\frac{\frac{N}{4}-\text { c.f. }}{f} \times i
$$

Where, $\boldsymbol{I}_{\mathbf{1}}=$ Lower limit of the quartile class; c.f. = Cumulative frequency of the class preceding quartile class; $f=$ Simple frequency of the quartile class; $i=$ Class-internal of the quartile class.

Similarly, the upper quartile $\left(Q_{3}\right)$ is the $3\left[\frac{N}{4}\right]^{\text {th }}$ item and the exact value of $Q_{3}$ is calculated by the
following formula: following formula:
s of Central Tendency - Median and Mode

$$
Q_{3}=I_{1}+\frac{\frac{3 N}{4}-\text { c.f. }}{f} \times i
$$

Let us understand the calculations of $Q_{1}$ and $Q_{3}$ with the help of following example.


| Marks | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Students | 16 | 14 | 23 | 17 | 7 | 3 |

Solution:

| Marks $(X)$ | No. of Students ( $f$ ) | c.f. |
| :---: | :---: | :---: |
| $0-10$ | 16 | 16 |
| $10-20$ | 14 | 30 |
| $20-30$ | 23 | 53 |
| $30-40$ | 17 | 70 |
| $40-50$ | 7 | 77 |
| $50-60$ | 3 | 80 |
|  | $\mathbf{N}=\mathbf{\Sigma f = 8 0}$ |  |

## Calculation of Lower Quartile ( $\mathbf{Q}_{\mathbf{1}}$ )

$Q_{1}=\frac{N}{4}=\frac{80}{4}=20^{\text {th }}$ item
$20^{\text {th }}$ item lies in the group 10-20
$l_{1}=10$, c.f. $=16, f=14, i=10$
By applying formula:
$Q_{1}=I_{1}+\frac{\frac{N}{4}-\text { c.f. }}{f} \times i=10+\frac{20-16}{14} \times 10=12.86$ Marks
$Q_{1}=12.86$ marks
Calculation of Upper Quartile $\left(Q_{3}\right)$
$Q_{3}=\frac{3 N}{4}=\frac{240}{4}=60^{\text {th }}$ item
$60^{6 \mathrm{~h}}$ item lies in the group 30-40
$l_{1}=30$, c.f. $=53, f=17, i=10$
$Q_{3}=I_{1}+\frac{\frac{3 N}{4}-\text { c.f. }}{f} \times i=30+\frac{60-53}{14} \times 10=34.12$ marks
$Q_{3}=34.12$ marks
Ans. Lower Quartile $\left(Q_{1}\right)=12.86$ marks; Upper Quartile $\left(Q_{3}\right)=34.12$ marks

Example 28. Calculate the value of lower quartile, median and upper quartile from the following data:

| Class-interval (lass then) | 10 | 20 | 30 | 40 | 50 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 22 | 60 | 106 | 141 | 161 |

## Solution:

In the given example, the data is given in the form of cumulative series. So, it will be first converted into simple series to calculate the median class and quartiles class.

| Classthtenel ( 0 ) | Frequency $(f)$ | c.f. |
| :---: | :---: | :---: |
| $0-10$ | 22 | 22 |
| $10-20$ | 38 | 60 |
| $20-30$ | 46 | 106 |
| $30-40$ | 35 | 141 |
| $40-50$ | 20 | 161 |
|  | $\mathbf{N}=\mathbf{\Sigma f}=161$ |  |

## Caiculation of Lomer Quartie ( $Q_{1}$ )

$a_{1}=\frac{N}{4}=\frac{161}{4}=40.25^{5} \mathrm{tem}$
$40.25^{\circ}$ tem lies in the group 10-20
$h_{1}=10, c f=22, f=38, i=10$
By applying formula:
$Q_{1}=L_{1}+\frac{\frac{N}{4}-C f}{f} \times i=10+\frac{40.25-22}{38} \times 10=14.80$
$O_{1}=14.30$

## Calculation of Median (Me)

$M_{e}=\frac{N}{2}=\frac{161}{2}=80.5 \mathrm{mem}$
$80.5^{\text {t }}$ tem lies in the group 20-30
$i_{1}=20, c f=60, f=46, i=10$

$M e=1_{1}+\frac{\frac{N}{2}-c f .}{f} \times i=20+\frac{60.5-60}{46} \times 10=24.45$
Median $=\mathbf{2 4 . 4 5}$

## Calculation of Upper Quartile ( $Q_{3}$ )

$Q_{3}=\frac{3 N}{4}=\frac{483}{4}=120.75^{\circ} \mathrm{item}$
$120.75^{\mathrm{m}}$ tem lies in the group $30-40$
$l_{1}=30$, c.f $=106, f=35, i=10$
veasures of Central Tendency - Median and Mode

$$
\begin{aligned}
& \quad \frac{3 N}{4}-\text { c.f. } \\
& Q_{3}=I_{1}+\frac{f}{f} \times 30+\frac{120.75-108}{35} \times 10=34.21 \\
& Q_{3}=34.21 \\
& \text { Ans. Lower Quartile }\left(Q_{1}\right)=14.80 ; \text { Median }=24.45 ; \text { Upper Ouarile }\left(Q_{3}\right)=34.21
\end{aligned}
$$

9.12


Mode is another important measure of central tendency, which is conceptually very useful. Mode is the value occurring most frequently in a set of observations and around which other items of the set cluster most densely. Mode is the value with the max actually the word 'mode has been derived from the French word 'La Mode' which signifiesfequiney the most fashionable values of a distribution, because it is repeated the highest number of times in the series. Thus Mode is the value which occur the largest number of times in a series.
Example: If the shoe size of $1 \overline{0}$ people is: $8,9,7,9,10,9,10,9,11,8$; mode can be conveniently found by arranging the observations in an ascending order ( $7,8,8,9,9,9,9,10,10,11$ ) and counting the number of times each observation occurs. Mode size of shoes is 9 as it occur the maximum number of times (four times).

## Definitions of Mode

In the words of A.M. Tuttle, "Mode is the value which has the greatest trequency density in its immediate neighborhood"
In the words of Croxton and Cowden, "Mode of a distribution is the value at the point around which the items tend to be most heavily concentrated".

## mportant Points about Mode

- Mode is extensively used to measure taste and preferences of people for a particular brand of the commodity.
- In case of frequency distribution, mode is determined by the value corresponding to maximum frequency.
- The value of mode is denoted by the symbol ' $Z$ '
tian when it is desired to know the most typical
Value preferable to mean and median whoes, the most common size of a ready-made arme the most commonsizeket expenditure of a student, the most popular candidate in an election, etc.
A distribution can either be uni-modal, bi-modal or muse there is no mode in that distration occurs the same number of times in a number of times in a series; distribution.
(i) No Modal Value: When each observation occur the sumber of times;
(ii) Uni-modal: When one item occur the maximum number or tims
(iii) Bi-modal: When two items have the same maximum frequency;
(iv) Multi-modal: When more than two items have the same maximum frequency. Mode with Frequency Curve If the nature of mode is to be explained graphically, it is obvious that the mode would be the point of maximum frequency which is indicated by the peak of a frequency curve


In the given diagram, X -axis denotes the value of variable and Y -axis the corresponding frequencies. Mode is that value on the $X$-axis, which correspond to the maximum frequency on the $Y$-axis.

### 9.13 CALCULATION OF MODE



The value of mode can be calculated in the following series:

1. Individual Series
2. Discrete Series
$\rightarrow$ Gpoerfing
Individual Series
There are two methods of finding oyt mode in an individual series:
3. By Observation;
4. By Converting individual series into a Discrete Series, i.e, by frequency distribution.

Mode by Way of Observation
Through observation, one can notice the occurrence of items in a distribution.
Step 1. Arrange the data in ascending or descending order.
Step 2. The item which occurs most in the series is 'Mode'.
Example 29. From the heights of 15 students, calculate the value of mode.

| Height (in inches) | 52 | 50 | 66 | 70 | 66 | 72 | 71 | 66 | 60 | 67 | 69 | 67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 48 | 60 |  |  |  |  |  |  |  |  |  |  |

## Solution:

| By arranging the series in an ascending order, we get: |
| :--- |
| $4\|c\| c\|c\| c\|c\| c\|c\| c\|c\| c\|c\|$ |
| 48 |
| By observation, height 66 inches occurs most, |
| By |

Measures of Central Tendency - Median and Mode
Mode by Converting Individual Series into Discrete Series
If number of items in an individual series are $m$
into discrete series. Mode is then calculated as the value corresponding to theries can be converted Example 30 . Calculate the value of Mode from the data into discrete series

Solution:

| Heights (in inches) | Frequency |
| :---: | :---: |
| 48 | 1 |
| 50 | 1 |
| 52 | 1 |
| 60 | 2 |
| 65 | 1 |
| 66 | 3 |
| 67 | 2 |
| 69 | 1 |
| 70 | 1 |
| 71 | 1 |
| 72 | 1 |
| Total | 15 |

The height of 66 inches has the maximum frequency. Therefore, mode height, i.e. (Z) is 66 .
Ans. Mode $=66$ inches
Example 31. Find out the mode from the followings figures by: (i) Observation Method; (ii) Frequency distribution Method.

| 57 | 50 | 60 | 65 | 80 | 40 | 43 | 63 | 70 | 60 | 53 | 57 | 63 | 53 | 57 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 57 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Solution:

## (I) Observation Method

By arranging the series in an ascending order, we get:

| 40 | 43 | 50 | 60 | 60 | 63 | 63 | 65 | 70 | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## By observation, 57 occurs most, therefore, the mode (Z) is 57 .

(II) Frequency Distribution Method



|  |  |
| :---: | :---: |
| 60 | 3 |
| 63 | 2 |
| 65 | 1 |
| 70 | 1 |
| 80 | 1 |
| Total | 17 |

Item 57 occurs the largest number of times. So, mode $(Z)=57$.

## Ans. Mode $=57$

## Discrete Series

There are two methods to determine mode in a discrete series:
(i) Mode by Observation, known as Inspection Method
(ii) Mode by Grouping Method.

Let us discuss these two methods in detail:
(i) Mode by Observation

The mode can be determined by inspection if:

- Frequencies are regular and homogeneous; and
- There is only one item which has the maximum frequency.


## In such a case, the value corresponding to the highest frequency would be the modal value.

 This is illustrated in the Example 32.Example 32. Find out mode of the following series.

| Example 32. Find out mode of the following series. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Daily Wages (in ₹) | 100 | 110 | 120 |  |  |  |
| No. of persons | 2 | 4 | 8 |  |  |  |
| Solution. |  |  |  |  |  |  |

(ii) Mode by Grouping Method

If the frequency distribution is irregular and heterogeneous, then it is not necessary that mode is always the value which occurs most frequently or whose frequency is the maximum. In such cases, Grouping Method is generally used for obtaining the mode.
According to grouping method, 2 tables are prepared to determine the modal value:

1. Grouping Table: In this first table, groupings of frequencies are presented in six columns
2. Analysis Table: In this second table, occurrence of frequencies or values in various grouping are written and added. Modal value is the valuequencies or values in various gro nber of groupings.
steps of Grouping Method
prepare a table consisting of 6 columns, in addition to a column for various values of $X$
column 1: Write the frequencies against various values of $X$, as given in the question;
column 2: Group frequencies in two's starting from the top. Find out their total and mark the
highest total;
Column 3: Group frequencies in two's starting from the second frequency (i.e. first frequency is left out). Find out their total and mark the highest total;
Column 4: Group frequencies in three's starting from the top. Find out their total and mark the highest total;

Column 5: Group frequencies in three's starting from the second frequency (i.e. first frequency is left out). Find out their total and mark the highest total;
Column 6: Group frequencies in three's starting from the third frequency (i.e. first and second frequencies are left out). Find out their total and mark the highest total
The highest frequency total in each of the six columns is identified and analysed in the Analysis Table, to determine mode.

Example 33.Calculate the value of Mode from the data given in Example 32 by grouping method. Solution:

First of all, grouping of the data is done.
Grouping Table

| $\begin{aligned} & \text { Wages } \\ & \text { in } ₹(X) \end{aligned}$ | No. of Persons (f) | In Two's |  | In Three's |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Column 1 | Column II | Column III | Column IV | Column V | Column VI |
| 100 | 2 |  |  |  |  |  |
| 110 | 4 | $\} 2+4=6$ |  | $2+4+8=14$ |  |  |
| 140 | 10 | ) $8+10=18$ | $10+5=15$ | $10+5+4=19$ |  | $8+10$ $=23$ |
| 150 | 5 | $\} 5+4=9$ |  |  |  |  |

the values having prepared Grouping Table, we are required to prepare an Analysis Table. in this ( $\checkmark$ ) as follows:

| Analysis Table |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Column No. | 100 | 110 | 120 | 130 | 140 | 150 |
| I |  |  |  | $\checkmark$ |  |  |
| II |  |  | $\checkmark$ | $\checkmark$ |  |  |
| III |  |  |  | $\checkmark$ | $\checkmark$ |  |


| Size | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 5 | 6 | 8 | 7 | 9 | 8 | 9 | 6 |

Solution.
The frequencies of two items: 12 and 14 have the highest frequency of 9 . So, grouping of frequencies is essential. The method of grouping will be used for determination of mode.

Grouping Table

| Size <br> (X) | Frequency (f) | In Two's |  | In Three's |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Column 1 | Column II | Column III | Column IV | Column V | Column VI |
| 8 | 5 | 11 |  |  |  |  |
| 9 | 6 | 11 | ) 14 | \} 19 |  |  |
| 10 | 8 | 15 | \} | ) | 21 |  |
| 11 | 7 |  |  | $1$ |  | 24 |
| 12 | 9 |  | $\} \quad 16$ | $24$ |  |  |
| 13 | 8 |  | $1$ |  |  |  |
| 14 | 9 |  | $\} \quad 17$ |  | 26 | 23 |
| 15 | 6 | 15 |  |  |  |  |


| Analysis Table |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Column No. | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| I |  |  |  |  | $\checkmark$ |  | $\checkmark$ |  |
| II |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |
| III |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |
| IV |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| V |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| VI |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |
| Total | - | - | 1 | 2 | 5 | 4 | 3 |  |

The size 12 is occurring maximum number of times ( 5 times). So, Mode $=12$.
Ans. Mode $=12$

(12e) Observation Method or Inspection Method
(ii) Grouping Method.
observation Method
If the frequencies are regular, homogeneous and there is a singlemaximum frequency, then we can use the observation method to determine Mode.

Steps of Observation Method
Step 1. Determine the modal class, i.e. class with the highest frequency; Step 2. Determine the exact value of mode by the following formula:

$$
\text { Mo }=l_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i
$$

Where,
Mo = Mode
$\mathrm{I}_{1}=$ Lower limit of modal class
$f_{1}=$ Frequency of the modal class
$f_{0}=$ Frequency of class preceding the modal class
$\mathrm{f}_{2}=$ Frequency of class succeeding the modal class
$\mathrm{i}=$ Class-interval of the modal class
The formula for calculation of Mode can also be expressed as:

$$
M 0=l_{1}+\frac{f_{1}-f_{0}}{\left(f_{1}-f_{0}\right)-\left(f_{1}-f_{2}\right)} \times i
$$

## Do Consider it

When frequency of pre modal class or post modal class is higher than that of modar class, .e. if $\left(2 f_{1}-f_{0}-f_{2}\right)$ comes out to be zero $\left(f_{1}-f_{2}\right)$ is negative, then value of mode is obtained by the following formula:

$$
\text { Mo }=I_{1}+\frac{\left|f_{1}-f_{0}\right|}{\left|f_{1}-f_{0}\right|+\left|f_{1}-f_{0}\right|} \times i
$$


(as discussed before). The only difference is that absolute
symbols have usual meanings (as discusen $f_{1}$ and $f_{0}$ and between $f_{1}$ and $f_{2}$ will be taken.
values (ignoring signs) of difference between $f_{1}$ and
(Refer Examples 40 and 41)

Example 35. Find out mode of the following series.

| Class-Interval | $0-5$ | $5-10$ | $10-15$ | $15-20$ | $20-25$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 2 | 4 | 15 | 6 | 7 |

## Solution:

By inspection, it is clear that modal class is 10-15, because frequency of this class is maximumi.e. is

| Computation of Mode |  |
| :---: | :---: |
| Class-Interval | Frequency |
| $0-5$ | 2 |
| $5-10$ | $4 \quad f_{0}$ |
| $\left(l_{1}\right) 10-15$ | $15 \quad f_{1}$ Modal Class |
| $15-20$ | $6 \quad f_{2}$ |
| $20-25$ | 7 |

## To calculate mode, the following formula will be used

Mode (Z) $=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i$
$h_{1}=10, f_{1}=15, f_{0}=4, f_{2}=6, i=5$
$Z=10+\frac{15-4}{2 \times 15-4-6} \times 5=10+\frac{11}{20} \times 5=12.75$
Ans. Mode $=12.75$

## Grouping Method

As discussed before, Inspection Method is of use only when there is regularity and homogeneity
in the series. In case of any irregularity, Grouping Method is preferred.

## Steps of Grouping Method

The determination of mode by grouping method involves two steps:
Step 1. Determine the Modal Class by the process of grouping. The grouping procedure is samte as done under discrete series.
Step 2. Determine the exact value of mode by the following formula:

$$
M_{0}=f_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i
$$

Let us understand the calculation ormode by Grouping Method (under continuous series) with the hell
of following example. ample.
Example 36. From the following data, determine mode.

| Size | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-80$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 4 | 10 | 25 | 15 | 23 | 22 | 12 | 3 |

diution. concentration of items is around 50-60 class (with frequency of 23 ). Hence, we prepare a Grouping Table and Analysis Table.

Grouping Table

| $\begin{aligned} & \text { size } \\ & (x) \end{aligned}$ | Frequency ( $f$ ) | In Two's |  | In Three's |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Column I | Column II | Column III | Column IV | Column V | Column VI |
| 10-20 | 4 | 14 |  | 1 |  |  |
| $20-30$ | 10 | ) | \} 35 | 39 |  |  |
| 30-40 | 25 | \} 40 |  | ) | 50 |  |
| 40-50 | 15 |  | \} 38 | , | ) | 63 |
| 50-60 | 23 | 45 | J | 60 | 1 |  |
| 60-70 | 22 | 45 |  | ) | 57 | 37 |
| 70-80 | 12 | $\} \quad 15$ | \} 34 |  |  |  |

Analysis Table

| Column No. | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I |  |  | $\checkmark$ |  |  |  |  |  |
| II |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |
| III |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |
| IV |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| V |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| VI |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |
| Total | - | - | 2 | 3 | 5 | 3 | 1 | - |

It is clear that modal class is 50-60 and frequency of this class is 23.
Using formula:
$\operatorname{Mode}(Z)=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i$
$I_{1}=50, f_{1}=23, f_{0}=15, f_{2}=22, i=10$
$Z=50+\frac{23-15}{2 \times 23-15-22} \times 10=50+\frac{3}{9} \times 10=58.89$
$A_{18} . M_{o d e}=58.89$
9.14 MODE IN SPECIAL CASES

The calculation process of Mode is different under some special circumstances. Let us discer these special cases:


Cumulative Series ('Less than' or 'More than')
When cumulative frequency distribution ('Less than' or 'More than' type) is given, then the cumulative frequency distribution has to be converted into a simple frequency distribution. The calculation of mode in cumulative series will be clear from Example 37 ('less than' series) and Example 38 ('more than' series).

Example 37. Find out the mode in the following series:

| Size (below) | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 1 | 3 | 13 | 17 | 27 | 36 | 38 |
| Solution: |  |  |  |  |  |  |  |

Solution:
Here, we are given the data in the form of less than cumulative frequency distribution. To compute mode we shall first arrange the data in the form of frequency distribution with continuous classes.

| Calculation of Frequency Table |  |  |
| :---: | :---: | :---: |
| Size | Frequency | c.f. |
| $0-5$ | 1 | 1 |
| $5-10$ | 2 | 3 |
| $10-15$ | 10 | 13 |
| $15-20$ | 4 | 17 |
| $20-25$ | 10 | 27 |
| $25-30$ | 9 | 36 |
| $30-35$ | 2 | 38 |

will find moderies, the distribution is irregular. Also the maximum frequency (10) is repeated. Therefore, wh will find mode by the method of grouping.

## Grouping Table



Analysis Table

| Column No. | $0-5$ | $5-10$ | $10-15$ | $15-20$ | $20-25$ | $25-30$ | $30-35$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I |  |  | $\checkmark$ |  | $\checkmark$ |  |  |
| II |  |  |  |  | $\checkmark$ | $\checkmark$ |  |
| III |  |  |  | $\checkmark$ | $\checkmark$ |  |  |
| IV |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| V |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| VI |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| Total | - | - | 2 | 3 | 6 | 3 | 1 |

Since the class 20-25 is repeated maximum number (6) of times, it is the modal class.
So, applying the formula:
$\operatorname{Mode}(Z)=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i$
$l_{1}=20, f_{1}=10, f_{0}=4, f_{2}=9, i=5$
$Z=20+\frac{10-4}{2 \times 10-4-9} \times 5=20+\frac{6}{7} \times 5=24.28$
Ans. Mode $=24.28$
Example 38. Calculate mode from the following particulars:

| Dally Wages in ₹ (More than) | 100 | 200 | 300 | 400 | 500 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. Of workers | 53 | 48 | 36 | 17 | 6 |
| Wormer |  |  |  |  |  |

Solution:
Here, we are given the data in the form of more than cumulative frequency distribution. To co
We we are given the data in the form of more in ancy distribution with continuous classes
${ }^{\text {W }}$ shall first arrange the data in the form of frequency distribution with conser
9.42

|  | Calculation of Frequency Table |  |
| :---: | :---: | :---: | :--- |
| Daily Wage $(\geqslant)$ | 5 | Frequency |
| $100-200$ | 12 | $f_{0}$ |
| $200-300$ | 19 | $\left(f_{1}\right)$ Modal Class |
| $\left(l_{1}\right) 300-400$ | 11 | $f_{2}$ |
| $400-500$ | 6 |  |
| $500-600$ |  |  |

By inspection, it is clear that modal class is 300-400, because frequency of this class is maximumi.e. 19 To calculate mode, the following formula will be used

$$
\operatorname{Mode}(Z)=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i
$$

$$
f_{1}=300, f_{1}=19, f_{0}=12, f_{2}=11, i=100
$$

$$
z=300+\frac{19-12}{2 \times 19-12-11} \times 100=300+\frac{7}{15} \times 100=346.67
$$

Ans. Mode $=₹ 346.67$
Mid-Values are given
In this case, we have to first convert the mid-values in to class-interval to calculate the value of mode.
Example 39. Calculate the mode from the following data:

| Example 39. Calculate the mode from the following data: |
| :--- |
| Marks (Mid-values) |$|$

## Solution:

In the given example, we are given the mid-values. We need to first convert it into continuous series. Step 1: The difference between the two mid-values is 10.
Step 2: Half of the difference is: $\frac{10}{2}=5$. Now, 5 is reduced and added to each mid-value to determine the lower limit and upper limit. It is shown in the following table:

Calculation of Class-Intervals

| Calculation of Class-Intervals |  |
| :---: | :---: | :---: |
| Marks $(X)$ | No. of Students $(f)$ |
| $0-10$ | 15 |
| $10-20$ | 20 |
| $20-30$ | 25 |
| $30-40$ | 24 |
| $40-50$ | 12 |
| $50-60$ | 31 |
| $60-70$ | 71 |
| $70-80$ | 52 |

${ }^{112 a^{s u v e s}}$ of Central Tendency - Median and Mode
$\|_{n^{\text {ine }}}$ given series, the $\quad$ Grouping Table

|  | In Two's |  |  | Colu In Three's |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Column II |  | Column III | Column IV |  | Column V | Column VI |  |
| 15  <br> 20  <br> 25  <br> 24  <br> 12  <br> 31  <br> 71  <br> 52  |  | 35 <br> 49 <br> 43 <br> 123 | $\begin{array}{rc} \} & 45 \\ \} & 36 \\ \} & 102 \end{array}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | 60 67 | \} 69 $\}$ | $\begin{aligned} & 1 \\ & 1 \\ & \} \end{aligned}$ | 61 <br> 154 |
| Analysis Table |  |  |  |  |  |  |  |  |
| Column No. | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
|  |  |  |  |  |  |  | $\checkmark$ |  |
| 1 |  |  |  |  |  |  | $\checkmark$ | $\checkmark$ |
| II |  |  |  |  |  |  | $\checkmark$ |  |
| III |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |
| IV |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| V |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
|  |  |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| VI |  |  |  |  | 2 | 4 | 5 | 2 |
| Total | - | - | - | 1 | 2 |  |  |  |

## Since the class 60-70 is repeated maximum number of times, it is the modal class.

## So , applying the formula:

$$
\begin{aligned}
& \text { Mode }(Z)=l_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i \\
& I_{1}=60, f_{1}=71, f_{0}=31, f_{2}=52, i=10 \\
& Z=60+\frac{71-31}{2 \times 71-31-52} \times 10=60+\frac{40}{59} \times 10=66.78
\end{aligned}
$$

$$
\text { Ans. Mode }=66.78 \text { marks }
$$

## Inclusive Class-Intervals

The frequency distribution must be continuous with exclusive type classes, without any gaps. In case data is not in the form of continuous classes, it must be converted into continuous ${ }^{\text {chasses }}$ before not in the form of continuous chassese in in in case of inclusive class-intervals, the formula
remain before applying the formula. Therefore, in case $o$ into an exclusive class-interval series.

Example 40. Calculate mode in the following distribution.

| Marks | $40-49$ | $50-59$ | $60-69$ | $70-79$ | $80-89$ | $90-98$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Students | 12 | 30 | 24 | 20 | 12 | 2 |
| Solution: |  |  |  |  |  |  |

## Solution:

In the given example, inclusive class-intervals will be first converted to exclusive class-intervals and, thereathen
mode will be determined.

## Calculation of Exclusive Class-Intervals

| Marks | No. of Students |
| :---: | :---: |
| $39.5-49.5$ | 12 |
| $49.5-59.5$ | 30 |
| $59.5-69.5$ | 24 |
| $69.5-79.5$ | 20 |
| $79.5-89.5$ | 12 |
| $89.5-99.5$ | 2 |

By inspection, the modal class is not clear. Although 49.5-59.5 class has the highest frequency of 30 , yet greatest concentration of items is around $59.5-69.5$ class (with frequency of 24 ). Therefore, we will find
mode by the method of grouping.

Grouping Table

| Size <br> (X) | No. of Students (f) | In Two's |  | In Three's |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Column I | Column II | Column III | Column IV | Column V | Column VI |
| 39.5-49.5 | 12 |  |  |  | Columiv | Column |
| 49.5-59.5 | 30 | 42 |  | 66 |  |  |
| 59.5-69.5 | 24 |  | \} 54 |  |  |  |
| 69.5-79.5 | 20 | \} 44 |  | ) | 74 |  |
| 79.5-89.5 | 12 |  | 32 |  |  | 56 |
| 89.5-99.5 | 2 | 14 |  | 34 |  |  |

Analysis Table

| Analysis Table |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Column No. | $39.5-49.5$ | $49.5-59.5$ | $59.5-69.5$ | $69.5-79.5$ | $79.5-89.5$ | $89.5-99.5$ |
| I |  | $\checkmark$ |  |  |  |  |
| II |  |  | $\checkmark$ | $\checkmark$ |  |  |
| III |  | $\checkmark$ | $\checkmark$ |  |  |  |
| IV | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |
| V |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| VI |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| Total | 1 | 4 | 5 | 3 | 1 |  |

qasures of Central Tendency - Median and Mode
From the analysis table, the modal group is $59.5-69.5$. The frequency or 9.4
formula:
$\operatorname{Mode}(Z)=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i$
But in the given example, $f_{1}(24)$ is
is calculated by the following formula:
Mode $(Z)=l_{1}+\frac{\left|f_{1}-f_{0}\right|}{\left|f_{1}-f_{0}\right|+\left|f_{1}-f_{2}\right|} \times i$
$f_{1}=59.5, f_{1}=24, f_{0}=30, f_{2}=20, i=10$
$z=59.5+\frac{|24-30|}{|24-30|+|24-20|} \times 10=59.5+\frac{6}{10} \times 10=65.5$
Ans. Mode $=65.5$ Marks

## Open-End Series

In case of open-end classes, the lower limit of the first class and upper limit of the last class is not given. To calculate Mode, there is no need to complete the class-interoal.
Example 41 would illustrate the point.
Example 41. Calculate the value of mode from the following particulars.

| Class-Intervals $(X)$ | Frequency (f) |
| :---: | :---: |
| Below 20 | 4 |
| $20-30$ | 6 |
| $30-40$ | 5 |
| $40-50$ | 10 |
| $50-60$ | 20 |
| $60-70$ | 22 |
| $70-80$ | 24 |
| $80-90$ | 6 |
| $90-100$ | 2 |

Solution:
. However, to calculate mode, there is no need to complete the
Cla8s-Interata consist of open-end classes. How
By inspection, the modal class is not clear. Although 70-80 class has the highest we prepare a Grouping Table
concentrion, the modal class is not clear. Aithough $70-80$ clas in 22 ). Hence, we prepare a Grouping
and Antration of items is around 60-70 class (with frequency
and Analysis Table.

Grouping Table


Analysis Table

| Column No． | Below 20 | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ | Above 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I |  |  |  |  |  |  | $\checkmark$ |  |  |  |
| II |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| III |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |
| IV |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |  |
| V |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |
| VI |  |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| Total | - | - | - | 1 | 3 | 5 | 4 | 1 | - | - |

It is clear that modal class is $60-70$ and frequency of this class is 22

## Using formula：

$\operatorname{Mode}(Z)=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times$
$t_{1}=60, t_{1}=22, f_{0}=20, f_{2}=24, i=10$
$Z=60+\frac{22-20}{2 \times 22-20-24} \times 10$
However，the value of $\left(2 f_{1}-f_{0}-f_{2}\right)$ is zero．In such cases，mode is calculated by the following formula
$\operatorname{Mode}(Z)=I_{1}+\frac{\left|f_{1}-f_{0}\right|}{\left|f_{1}-f_{0}\right|+\left|f_{1}-f_{2}\right|} \times i$

$$
z=60+\frac{|22-20|}{|22-20|+|22-24|} \times 10=60+\frac{2}{4} \times 10=65
$$

Ans． Mode $=65$
equal Class－Intervals
vale can be calculated only if the rlass－intervals are of equal magnitude．If unequal class－intervals are Given，then we must make them equal before we calculate mode．The class－intervals should be made equal and frequencies be adjusted．It is assumed that frequencies are equally distributed．
The following example will illustrate the point
Example 42．Find the mode from the following data：

| Class－interval | $0-10$ | $10-20$ | $20-40$ | $40-50$ | $50-70$ | $70-80$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 10 | 14 | 40 | 35 | 42 | 10 |

Solution：
In the given example，the class－intervals are not equal．To calculate mode，the class－intervals are made equal and frequencies are adjusted．We take the assumption that in this case，frequencies are equally distributed．

| Calculation of Frequency Table |  |
| :---: | :---: |
| Class－Interval | Frequency |
| $0-10$ | 10 |
| $10-20$ | 14 |
| $20-30$ | 20 |
| $30-40$ | $20\left(t_{0}\right)$ |
| $\left(l_{1}\right) 40-50$ | $35\left(\mathrm{t}_{1}\right)$ Modal Class |
| $50-60$ | $21\left(\mathrm{t}_{2}\right)$ |
| $60-70$ | 21 |
| $70-80$ | 10 |

class is $40-50$ as frequency of this class is maximum ie． 35

$\operatorname{Mode}(Z)=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times$
$l_{1}=40, t_{1}=35, t_{0}=20, t_{2}=21, i=10$
$Z=40+\frac{35-20}{2 \times 35-20-21} \times 10=40+\frac{15}{29} \times 10=45.17$

## SUMMARY OF MODE IN SPECIAL CASES

## CASE 1: Cumulative Frequency Distribution

 (Less Than Senies): Convert it into Simple FrequDistribution and then calculate Mode in usual manner. | Distribution and then calculate Mode in usual manner. |
| :--- |
| Marks Less Less Less Less Less | $\begin{array}{lcccc}\text { Marks } & \text { Less } \\ \text { than } 10 & \text { Less } \\ \text { than } 20 & \text { than } 30 \text { than } 40 \\ \text { than } 50\end{array}$ Sludenis 2

| Marks $(x)$ | Students $(f)$ |
| :---: | :---: |
| $0-10$ | 2 |
| $10-20$ | 4 |
| $20-30$ | 15 |
| $30-40$ | 6 |
| $40-50$ | 7 |

By inspection, it is clear that modal class is $20-30$.
$t=20 \quad t=15 \quad t=4 \quad h=6 \quad i=10$
$Z=i_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i=20+\frac{15-4}{2 \times 15-4-6} \times 10=12.75$
CASE 3: Inclusive Class-Intervals (Classes of type 10-19, 20-29 are given): Corvert Inclusive Class-Intervals
into Exclusive Series.

| into Exclusive Series. |
| :--- |
| Class-Intervals $10-19$ |


| Frequency | 9 | 10 | 22 | 40 | 18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Class-Intervals $(X)$

## $9.5-19.5$ $19.5-29.5$ <br> 29.5-39.5 <br> 39.5-49.5

$39.5-49.5$
$49.5-59.5$
By inspection, it is clear that modal class is 39.5-49.5 as requency of this class is maximum, ie. 40

## $t=305 \quad \mathrm{H}_{1}=40 \quad \mathrm{t}_{0}=22 \quad \mathrm{t}_{2}=18 \quad i=10$

$Z=I_{1}+\frac{f_{1}-f_{0}}{x_{1}-f_{0}-f_{2}}$

CASE 5a: Unequal Cla ervals are Merged togetherl dass-intervals are made equal and Before calculating mode, X $\quad 0-5 \quad 5-10 \quad 10-15 \quad 15-20 \quad$ and | 4 | 6 | 7 | 5 | $20-30$ | $30-40$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 60 | 8 |  |  |  | o make the class-intervals equal, $0-5$ and $5-10$ are merged $0(=4+6)$. Similarly, $10-15$ and 15 -20 are merged togency of nake the class-interval of 10-20 with frequency of $12(=7+5)$

Class-Intervals ( $X$ )
$0-10$
$10-20$
$20-30$
10
10
$10-20$
$20-30$
30-40
spection, it is clear that modal class is $20-30$
Fine $f_{1}=20 \quad t_{0}=12 \quad t_{2}=8 \quad I=10$
$=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i=20+\frac{30-12}{2 \times 30-12-8} \times 10=24.5$

CASE 2: Mid-Values are Given: When

are given, then convert such mid-value lies into regid.po | Mid-Points | 5 | 15 | 25 | 35 | 45 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | 8 | 20 | 40 | 10 | 45 |

| Class-Intervals $(X)$ | Frequency $(\mathrm{f})$ |
| :---: | :---: |
| $0-10$ | 8 |
| $10-20$ | 20 |
| $20-30$ | 40 |
| $30-40$ | 10 |
| $40-50$ | 18 |
| By inspection, it is clear that modal class is $20-30$ |  |

By inspection, it is clear that modal class is $20-30$

$$
I_{1}=20 \quad f_{1}=40 \quad f_{0}=20 \quad f_{2}=10 \quad l=10
$$

$Z=l_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i=20+\frac{40-20}{2 \times 40-20-10} \times 10=24$
CASE 4: Open-End Series (Lower limit of first class and upper limit of last class not given): There is no need to find missing limits, i.e. calculate Mode in usual manner. Class-Intervals $\begin{gathered}\text { Less } \\ \text { than } 40\end{gathered}$ 40-50 $\begin{gathered}50-60 \mid 60-70\end{gathered}$

| Frequency | 3 | 14 | 24 | 9 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Class-Intervals $(X)$ |  |  |  |  |  |


| Class-Intervals $(X)$ | Frequency $(f)$ |
| :---: | :---: |
| Less than 40 | 3 |

$\square$

$$
\frac{}{\mathrm{Bv}}
$$

By inspection, it is clear that modal class is 50-60

$$
\begin{array}{llll}
\mathrm{f}_{1}=50 & \mathrm{f}_{1}=24 & \mathrm{f}_{0}=14 & \mathrm{f}_{2}=9
\end{array} \quad \mathrm{l}=10
$$

$Z=f_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i=50+\frac{24-14}{2 \times 24-14-9} \times 10=54$
CASE 5b: Unequal Class-Intervals (When Class-Intervals are Split-up): Before calculating mode class-intervals are made equal and frequencies are adjuste0.
$\square$ $10-2$
9
$20-40$
32

| $40-50$ | $50-70$ |
| :---: | :---: |
| 36 | 12 |

To make the class-intervals equal, $20-40$ is split up as $20-30$ and $30-40$ with frequency of $16(=32 \div 2)$ each. Similarly, $50-70$ bach split up as $50-60$ and $60-70$ with frequency of $6(=12+2)$ each

Class-Intervals ( $X$ )
Frequency ()

$$
\begin{aligned}
& 10-20 \\
& 20-30 \\
& 30-40 \\
& 40-50 \\
& 50-60 \\
& 60-70
\end{aligned}
$$

By inspection, it is clear that modal class is $40^{-50}$.
$I_{1}=40 \quad f_{1}=38 \quad f_{0}=16 \quad f_{g}=0 \quad \mid=10$
$Z=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i=40+\frac{36-16}{2 \times 36-16-6} \times 10^{-14}$

Glep ${ }^{5}$ to Determine Mode by Graphical Method step 1 . Draw a histogram of the given data.
stap 2 . The rectangle with the greatest height will be the modal class.
step 3. Draw a line joining the top right point of the rectangle of the modal class with the top right point of the rectangle of the class preceding the modal class. step 4 . Similarly, draw a line joining the top left point of the rectangle of the modal class with the top left point of the rectangle of the class succeeding the modal class. Step 5 . From the point of intersection of two diagonal lines, draw a perpendicular on the $X$-axis. Step 6 . The point at which the perpendicular touches the $X$-axis gives the modal value. The Graphical Method will be clear from the following example:

Example 43. Find out the mode of the following series, using the Graphic Method.

| Marks | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Students | 5 | 10 | 25 | 15 | 10 | 5 |

Solution:


Verification: By Inspection we find that modal class is 20-30. Applying the formula:
$M_{0 d e}(Z)=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times$
Given: $I_{1}=20, f_{1}=25, f_{0}=10, f_{2}=15, i=10$
$Z=20+\frac{25-10}{2 \times 25-10-15} \times 10=20+\frac{150}{25}=26$
${ }^{\text {Ans }}, \mathrm{Mode}_{\theta}=26$ Marks
9.16 RELATIONSHIP BETWEEN MEAN, MEDIAN AND MODE

The relationship between mean, median and mode depends upon the nature of distribution which may be either symmetrical or asymmetrical.

1. Symmetrical Distribution: In case of symmetrical distribution, the values of mean, median and mode are equal, i.e. for symmetrical curves, Mean $(X)=\operatorname{Median}(\mathrm{Me})=\operatorname{Mode}(\mathrm{Z})$. The symmetrical distribution gives the shape of bell as seen in following figure:


Mode touches the peak of the curve indicating maximum frequency; Median divides the area of the curve in two equal halves and Mean is the centre of gravity.
2. Asymmetrical Distribution: In actual life, most of the distributions are not symmetrical. In an asymmetrical series, mean, median and mode have different values. The frequency curve is not bell shaped, i.e. height of the curve is not in the middle. An asymmetrical (skewed) distribution is either positively skewed or negatively skewed.

- For a positively skewed distribution, most of the values of observations in a distribution fall to the right of mode. The order of magnitude of these measures will be: Mean > Median > Mode
For a negatively skewed distribution values of lower magnitude are concentrated more to the left of the mode. The order of magnitude of these measures will be: Mean $<$ Median $<$ Mode.


Asymmetrical Distribution (Positively 5 Sk

Megsures of Central Tendency - Median and Mode


Asymmetrical Distribution (Negativoly Skewed)

Relationship between Mean, Median and Mode in an Asymmetrical Distribution
According to Karl Pearson, the relationship between mean, median and mode in an asymmetrical distribution is given by:

## Mode $=\mathbf{3}$ Median - $\mathbf{2}$ Mean

1. This formula is specially useful to determine the value of mode, when it is ill-defined.
2. If we know any two of the three values (mean, median and mode), the third can be estimated by using the given formula. The value so computed will be more or less same as obtained by using exact formula, provided distribution is moderately asymmetrical. (Refer Examples 44, 45, 46, 47 and 48)

Example 44. If the mean and median of moderately asymmetrical series are 26.8 and 27.9 respectively. Calculate the value of mode.
Solution:
Using the empirical relationship, we know:
Mode $=3$ Median -2 Mean $=(3 \times 27.9)-(2 \times 26.8)=83.7-53.6=30.1$
Ans. Mode $=30.1$
Example 45. If mean of series is 30 and mode is 25 . Find Median.
Solution:
Using the empirical relationship, we know:
Mode $=3$ Median - 2 Mean
$25=3$ Median - $(2 \times 30)$
3 Median $=25+60$
Median $=\frac{85}{3}=28.33$
Ans. Medlan $=28.33$


## MODE <br> (Value occuring most frequently in a set of observalions)



Demerits

- Not rigidly defined
- Not based on all the observations of a series
- Not capable of Algebraic Treatment
- Indeterminate Value

Affected by fluctuations of sampling

## Q:18 COMPARISON BETWEEN MEAN, MEDIAN AND MODE

Nehare discussed the concepts of mean, median and mode in detail. However, the choice of wich method to use, for a given set of data, depends upon number of considerations (Discussed nChupter 8, Section 8.4), which can be classified into the following broad heads:
1 Rigidly defined: Mean and median are rigidly defined, whereas mode is not rigidly defined in all the situations.
2 Based on all observations: An appropriate average should be based on all the observations. This characteristic is met only by mean and not by median or mode.
3. Possess sampling stability: The preference should be given to mean when the requirement of least sampling variations is to be fulfilled.
${ }^{4}$ Further algebraic treatment: It should be capable of further mathematical treatment. This characteristic is satisfied only by mean and, consequently, most of the statistical theories use mean as a measure of central tendency.
${ }^{5}$. Easy to understand and calculate: An average should be easy to understand and easy to interpret. This characteristic is satisfied by all the three averages.
6. Not affected by extreme values: It should not be unduly affected by the extreme observations. Whil mode is most suitable average from this point of view. Median is only slightly affected Whinile mean is very much affected by the presence of extreme observations.
unoly ${ }^{\text {un }}$ on: Generally, arithmetic mean is regarded as the best measure of central tendency and is most ${ }^{\text {nt hed }}$ hatur in practice. However, in some specific cases, mode or median are also used, depending hature of available data.

### 9.19 CALCULATION OF MEAN, MEDIAN AND MODE IN SPECIAL CASES

The calculation process of Mean, Median and Mode is different under some circumstances. Let us have a quick recap of treatment of special cases:

| Cases | MEAN | MEDIAN | MODE |  |
| :---: | :---: | :---: | :---: | :---: |
| Cumulative <br> Series <br> ('Less than' or <br> 'More than') | Convert the cumulative frequency into a simple frequency distribution and then calculate mean in the usual manner. | Convert the cumulative frequency into a simple frequency distribution in order to find out the frequency of median class and then calculate median in the usual manner. | Convert the cumulative frequency into a simple frequency distribution and then calculate mode in the usual manner. | 49,50 |
| Mid-Values are given | Calculate mean in usual manner. Do not convert mid-values into classintervals. | Convert the mid-values into Class-intervals and then calculate median. | Convert the mid-values into Class-intervals to calculate mode. | 51 |
| Inclusive ClassIntervals | Calculate mean in usual manner. Do not convert the series into an exclusive class-interval series. | Class-intervals are converted into an exclusive class-interval series to calculate median. | Class-intervals are converted into an exclusive class-interval series and, thereafter, mode is calculated. | 52 |
| Open-End Series | To calculate mean, missing class limits are assumed, which depends on the pattern of class-intervals of other classes. | Median is calculated in the usual manner without completing the class-intervals. | Mode is calculated in the usual manner without completing the classintervals. | 53 |
| Unequal ClassIntervals | Mean can be determined in the usual manner after calculating the midvalues of each interval. Class-intervals are not made equal. | In case of median also, class-intervals are not made equal and median is calculated in the usual manner. | To calculate mode, it is essential to make class-intervals equal and frequencies have to be adjusted. | 54 |

SUMMARY OF MEAN, MEDIAN AND MODE IN SPECIAL CASES SU Mumulative Frequency Distribution
(Less Than Series) (Less Than Series)
Example 49. Calculate Mean, Median and Mode:

| Age in Years <br> (Less than) | 10 | 20 | 30 | 40 | 50 | 60 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |


| MEAN: Convert it into Simple Frequency Distribut 110 |
| :--- |

MEAN.

| Cumulative Frequency Distribution |
| :--- |
| (More Than Series) |
| Example 50. Calculate Mean, Median and Mode:       <br> Marks <br> (More than) 0 10 20 30 40 50 <br> No. of Students 90 87 78 60 30 12 |

then calcula Age in $\begin{array}{ccc}\text { No. of } & \text { Mid- } \\ \text { Persons } \\ \text { value }\end{array} \underset{(A=25)}{d}$ | years | $\begin{array}{c}\text { Persons } \\ (\mathrm{f})\end{array}$ | $\begin{array}{c}\text { value } \\ (\mathrm{m})\end{array}$ |
| :---: | :---: | :---: |
| $0-10$ | 15 | 5 | $\begin{array}{ll}0-10 & 15\end{array}$

| $d^{\prime}=\frac{m-A}{C}$ | $f d^{\prime}$ |
| :---: | :---: |
| $(C=10)$ |  |
| -2 | -30 |
| -1 | -17 |
| 0 | 0 |
| 1 | 27 |
| 2 | 38 |
| 3 | 39 |
|  | $\Sigma\left\{d^{\prime}=57\right.$ |

Mean $(\bar{X})=A+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma f} \times C=25+\frac{57}{110} \times 10=30.18$ years
MEDIAN: Convert it into Simple Frequency Distribution and then calculate Median in usual manner.

| Age in years ( X ) | No. of Persons ( $f$ ) | c.f. |
| :---: | :---: | :---: |
| 0-10 | 15 | 15 |
| 10-20 | 17 | 32 |
| 20-30 | 19 | 51 |
| 30-40 | 27 | 78 |
| 40-50 | 19 | 97 |
| 50-60 | 13 | 110 |
|  | $\mathrm{N}=\boldsymbol{\Sigma} \mathrm{f}=110$ |  |
| $M_{\theta}=\frac{N}{2}=\frac{110}{2}=55^{\text {th }}$ item; $55^{\text {th }}$ item lies in group 30-40 |  |  |
| $\begin{aligned} & \mathrm{I}_{1}= \\ & 30 \end{aligned}$ | c.f. $=51 \quad f=27 \quad i=10$ |  |
| $=I_{1}+\frac{\mathrm{N} / 2-\text { c.f. }}{f}$ | $i=30+\frac{55-51}{27}$ | $=31.48$ |

MODE: Convert it into Simple Frequency Distribution and then calculate Mode in usual manner.

| Age in years $(X)$ | No. of Persons $(f)$ |
| :---: | :---: |
| $0-10$ | 15 |
| $10-20$ | 17 |
| $20-30$ | 19 |
| $30-40$ | 27 |
| $40-50$ | 19 |
| $50-60$ | 13 |
| By inspection, it is clear that modal class is $30-40$. |  |
| $I_{1}=30 \quad f_{1}=27 \quad f_{0}=19 \quad f_{2}=19 \quad i=10$ |  |
| $Z=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i=30+\frac{27-19}{2 \times 27-19-19} \times 10=35$ years |  |

hen calculate Meanto Simple Frequency Distribution and

|  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Marks <br> $(X)$ | No. of <br> Students <br> $(f)$ | Mid- <br> value <br> $(m)$ | $d=m-A$ <br> $(A=25)$ | $d^{\prime}=\frac{m-A}{C}$ <br> $(C=10)$ | $\mathrm{fd}^{\prime}$ |
| $0-10$ | 3 | 5 | -20 | -2 | -6 |
| $10-20$ | 9 | 15 | -10 | -1 | -9 |
| $20-30$ | 18 | 25 | 0 | 0 | 0 |
| $30-40$ | 30 | 35 | 10 | 1 | 30 |
| $40-50$ | 18 | 45 | 20 | 2 | 36 |
| $50-60$ | 12 | 55 | 30 | 3 | 36 |
|  | $\mathrm{Ef}=90$ |  |  |  | Ifd ${ }^{\prime}=87$ |

Mean $(\overline{\mathrm{X}})=\mathrm{A}+\frac{\Sigma \mathrm{Id}^{\prime}}{\Sigma \mathrm{f}} \times \mathrm{C}=25+\frac{87}{90} \times 10=34.67$ marks
MEDIAN: Convert it into Simple Frequency Distribution and then calculate Median in usual manner

| Marks $(\mathrm{X})$ | No. of Students $(\mathrm{f})$ | c.f. |
| :---: | :---: | ---: |
| $0-10$ | 3 | 3 |
| $10-20$ | 9 | 12 |
| $20-30$ | 18 | 30 |
| $30-40$ | 30 | 60 |
| $40-50$ | 18 | 78 |
| $50-60$ | 12 | 90 |
|  | $\mathrm{~N}=\Sigma \mathrm{f}=90$ |  |

$\mathrm{Me}=\frac{\mathrm{N}}{2}=\frac{90}{2}=45^{\text {th }}$ item; $45^{\text {th }}$ item lies in group $30-40$

$$
\begin{aligned}
& l_{1}=\quad \text { c.f. }=30 \quad f=30 \quad i=10 \\
& 30
\end{aligned}
$$

$$
\mathrm{Me}=\mathrm{I}_{1}+\frac{\mathrm{N} / 2-\mathrm{c} . \mathrm{f}}{\mathrm{f}} \times i=30+\frac{45-30}{30} \times 10=35 \text { marks }
$$

MODE: Convert it into Simple Frequency Distribution and Mode in usual manner.
$\begin{array}{ll}\text { Marks }(\mathrm{X}) & \text { No. of Students (f) }\end{array}$
Marks (X
$0-10$

| arks $(X)$ | 3 |
| ---: | ---: |
| $0-10$ | 9 |
| $10-20$ | 18 |
| $20-30$ | 30 |
| $30-40$ | 18 |
| $40-50$ | 12 |
| $50-60$ |  |

inspection it is clear that modal class is $30-40$.
$\begin{array}{rlll} \\ f_{1}=30 & f_{1}=30 & f_{0}=18 & f_{2}=18\end{array} \quad i=10$
$Z=l_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i=30+\frac{30-18}{2 \times 30-18-18} \times 1$

following data:
Marks

| No. of Students | 3 | 5 | 9 | 3 | $40-49$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $50-5$ |  |  |  |  |  |

MEAN: Convert it into Simple Frequency Distribution an then calculate Mean in usual manner
MEAN: Comert it into Simple Frequency Distrioun

| Midvalue (m) | Frequency (i) | $\begin{aligned} & d=m-A \\ & (A=55) \end{aligned}$ | $\begin{aligned} & d^{\prime}=\frac{m-A}{C} \\ & (C=10) \end{aligned}$ | fd ${ }^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: |
| 35 | 2 | -20 | -2 | -4 |
| 45 | 18 | -10 | -1 | -18 |
| 55 | 24 | 0 | 0 | 0 |
| 65 | 20 | 10 | 1 | 20 |
| 75 | 8 | 20 | 2 | 16 |
| 85 | 3 | 30 | 3 | 9 |
| $\mathrm{Ef}=75$ |  |  |  | $\Sigma \mathrm{fd} \mathrm{d}^{\circ}=23$ |

$\operatorname{Mean}(\bar{X})=A+\frac{\Sigma \bar{C}}{\Sigma F} \times C=55+\frac{23}{75} \times 10=58.06$
MEDIAN: Convert it into Simple Frequency Distribution and then calculate Median in usual manner.

| Class-interval $(x)$ | Frequency <br> $(6)$ | c.f. |
| :---: | :---: | :---: |
| $30-40$ | 2 | 2 |
| $40-50$ | 18 | 20 |
| $50-60$ | 24 | 44 |
| $60-70$ | 20 | 64 |
| $70-80$ | 8 | 72 |
| $80-90$ | 3 | 75 |
| $N=\Sigma 5=75$ |  |  |

$M e=\frac{N}{2}=\frac{75}{2}=\begin{aligned} & 37.5^{t h} \\ & \text { tem; }\end{aligned} \quad 37$ tem lies in group $50-60$

$$
\begin{aligned}
& l_{1}=\quad c f=20 \quad f=24 \quad i=10 \\
& 50 \quad \text {.f. }
\end{aligned}
$$

$$
M e=1_{1}+\frac{5 / 2-c f}{f} \times i=50+\frac{37.5-20}{24} \times 10=57.29
$$

MODE: Conven it into Simple Frequency Distribution and then calculate Mode in usual manne.

| Class-interval $(X)$ | Frequency |
| :---: | :---: |
| $30-40$ | (f) |
| $40-50$ | 2 |
| $50-60$ | 18 |
| $60-70$ | 24 |
| $70-80$ | 20 |
| $20-90$ | 8 |
| By inspection, | 3 |

frequency of this is clear that modal class is $30-40$ as

$$
l_{1}=50 \quad f_{1}=24 \quad f_{0}=18 \quad f_{2}=20 \quad i=10
$$

| Marks (X) | No. of Students (f) | Midvalue (m) | $\begin{aligned} & d=m-A \\ & (A=34.5) \end{aligned}$ | $\begin{aligned} & d^{\prime}=\frac{m-A}{C} \\ & (C=10) \end{aligned}$ | $\mathrm{fd}^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10-19 | 3 | 14.5 | -20 | -2 |  |
| 20-29 | 5 | 24.5 | -10 | -1 | 6 |
| 30-39 | 9 | 34.5 | 0 | -1 | -5 |
| 40-49 | 3 | 44.5 | 10 | 0 | 0 |
| 50-59 | 2 | 54.5 | 20 | 2 | 3 |
|  | $\Sigma \mathrm{f}=22$ |  |  |  | 4 |

Mean $(\overline{\mathrm{X}})=\mathrm{A}+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma \mathrm{f}} \times \mathrm{C}=34.5+\frac{-4}{22} \times 10=32.68$ marks

MEDIAN: Convert it into Simple Frequency Distribution and then calculate Median in usual manner.

| Marks <br> $(X)$ | No. of Students <br> $(f)$ | c.f. |
| :---: | :---: | :---: |
| $9.5-19.5$ | 3 | 3 |
| $29.5-29.5$ | 5 | 8 |
| $29.5-39.5$ | 9 | 17 |
| $39.5-49.5$ | 3 | 20 |
| $49.5-59.5$ | 2 | 22 |
|  | $\mathrm{~N}=\Sigma \mathrm{f}=22$ |  |

$M e=\frac{N}{2}=\frac{22}{2}=\begin{gathered}1 \\ \text { item; }\end{gathered} \mathrm{th}^{\mathrm{n}} 11^{\text {th }}$ item lies in group 29.5-39.5

$$
l_{1}=29.5 \quad \text { c.f. }=8 \quad f=9 \quad i=10
$$

$M e=I_{1}+\frac{N / 2-c . f}{f} \times i=29.5+\frac{11-8}{9} \times 10=32.83$ marks
MODE: Corvert it into Simple Frequency Distribution and then calculate Mode in usual manner.

| Marks <br> $(X)$ | No. of Students |
| :---: | :---: |
| $(f)$ |  |
| $9.5-19.5$ | 3 |
| $29.5-29.5$ | 5 |
| $29.5-39.5$ | 9 |
| $39.5-49.5$ | 3 |
| $49.5-59.5$ | 2 |

By inspection, it is clear that modal class is 29.5-39.5 as frequency of this class is maximum, i.e. 9 .

$$
Z=l_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i=50+\frac{24-18}{2 \times 24-18-20} \times 10=56
$$

$$
\begin{gathered}
l_{1}=29.5 \quad f_{1}=9 \quad f_{0}=5 \quad f_{2}=3 \quad l=10 \\
Z=f_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i=29.5+\frac{9-5}{2 \times 9-5-3} \times 10=33.5 \mathrm{marks}^{2}
\end{gathered}
$$



Example 54. Calculate Mean, Median and Mode from the
following data.
manner:

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
class- \\
interval
\end{tabular} \& \begin{tabular}{l}
Frequency \\
(f)
\end{tabular} \& Midvalue (m) \& \[
\begin{aligned}
\& d=m-A \\
\& (A=45)
\end{aligned}
\] \& \[
\begin{aligned}
\& d^{\prime}=\frac{m-A}{C} \\
\& (C=10)
\end{aligned}
\] \& fd \\
\hline (x) \& 8 \& 15 \& -30 \& -3 \& -24 \\
\hline 10-20 \& 12 \& 25 \& -20 \& -2 \& -24 \\
\hline \(20-30\)

$00-40$ \& 20 \& 35 \& -10 \& -1 \& -20 <br>
\hline $30-40$
$40-50$ \& 10 \& 45 \& 0 \& 0 \& 0 <br>
\hline 40-50 \& 6 \& 55 \& 10 \& 1 \& 6 <br>
\hline $50-60$
$60-70$ \& 4 \& 65 \& 20 \& , \& 8 <br>
\hline $60-70$ \& $=60$ \& \& \& \& ${ }^{\prime}=-5$ <br>
\hline
\end{tabular}

Mean $(\overline{\mathrm{X}})=\mathrm{A}+\frac{\Sigma \mathrm{fd} \mathrm{d}^{\prime}}{\Sigma f} \times \mathrm{C}=45+\frac{-54}{60} \times 10=36$
MEDIAN: There is no need to determine missing limits,
i.e., Median is calculated in the usual manner:

| Class-interval | Frequency <br> $(\mathrm{X})$ | c.f. |
| :---: | :---: | :---: |
| Less than 20 | 8 | 8 |
| $20-30$ | 12 | 20 |
| $30-40$ | 20 | 40 |
| $40-50$ | 10 | 50 |
| $50-60$ | 6 | 56 |
| Above 60 | 4 | 60 |
|  | $\mathrm{~N}=\Sigma \mathrm{f}=\mathbf{6 0}$ |  |

$M_{\theta}=\frac{N}{2}=\frac{60}{2}=30^{\text {th }}$ item; $30^{\text {th }}$ item lies in group $30-40$

$$
\begin{array}{lll}
l_{1}= \\
30
\end{array} \quad \text { c.f. }=20 \quad f=20 \quad i=10
$$

$$
M e=I_{1}+\frac{N / 2-c . f .}{f} \times i=30+\frac{30-20}{20} \times 10=35
$$

MODE: To calculate mode, there is no need to complete ho class-intervals.

| Class-Interval $(X)$ | Frequency $(i)$ |
| :---: | :---: |
| Less than 20 | 8 |
| $20-30$ | 12 |
| $30-40$ | 20 |
| $40-50$ | 10 |
| $50-60$ | 6 |
| Above 60 | 4 |

Ainspection, it is clear that modal class is $30-40$ and
Wency of this class is 20 .
$I_{1}=30 \quad f_{1}=20 \quad f_{2}=12 \quad i=10$
$z=l_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times 1=30+\frac{20-12}{2 \times 20-12-10} \times 10=34.44$

MEAN: Convert it into Simple Frequency Distribution and then calculate Mean in usual manner.

| Marks <br> $(X)$ | No. of <br> Students <br> $(5)$ | Mid-value <br> $(\mathrm{m})$ | fm |
| :---: | :---: | :---: | :---: |
| $0-10$ | 2 | 5 |  |
| $10-15$ | 3 | 12.5 | 37.5 |
| $15-20$ | 2 | 17.5 | 35 |
| $20-30$ | 12 | 25 | 300 |
| $30-40$ | 4 | 35 | 140 |
| $40-50$ | 7 | 45 | 315 |
|  | $\Sigma f=30$ |  | $\Sigma f m=837.5$ |

$$
\text { Mean }(\overline{\mathrm{X}})=\frac{\Sigma \mathrm{fm}}{\Sigma \mathrm{f}}=\frac{837.5}{30}=27.92
$$

MEDIAN: Convert it into Simple Frequency Distribution and then calculate Median in usual manner.

| Marks <br> $(X)$ | No. of Students <br> (I) | o.f. |
| :---: | :---: | :---: |
| $0-10$ | 2 | 2 |
| $10-15$ | 3 | 5 |
| $15-20$ | 2 | 7 |
| $20-30$ | 12 | 19 |
| $30-40$ | 4 | 23 |
| $40-50$ | 7 | 30 |
|  | $\mathrm{~N}=\Sigma \mathrm{f}=30$ |  |

$M e=\frac{N}{2}=\frac{30}{2}=\begin{aligned} & 15^{\text {item; }}{ }^{\text {th }} \quad 15^{\text {th }} \text { item lies in group } 20-30 ~\end{aligned}$

$$
\mathrm{l}_{1}=20 \quad \text { c.f. }=7 \quad \mathrm{f}=12 \quad \mathrm{i}=10
$$

$M e=l_{1}+\frac{N / 2-c . f}{f} \times i=20+\frac{15-7}{12} \times 10=26.67$
MODE: Convert it into Simple Frequency Distribution and then calculate Mode in usual manner.

| then calculate Mode in usual manner. |  |
| :---: | :---: |
| Marks (x) | No. of Students (i) |
| $0-10$ | 2 |
| $10-20$ | 5 |
| $20-30$ | 12 |
| $30-40$ | 4 |
| $40-50$ | 7 |

By inspection, it is clear that modal class is $20-30$ as frequency of this class is maximum, i.e. 12

$$
I_{1}=20 \quad i_{1}=12 \quad f_{0}=5 \quad i_{2}=3 \quad i=10
$$

$Z=I_{1}+\frac{f_{1}-f_{0}}{2 t_{1}-f_{0}-f_{2}} \times i=20+\frac{12-5}{2 \times 12-5-4} \times 10=24.67$

FORMULAE AT A GLANCE
4. MODE

| 1. MEDIAN | $M e=$ Size of $\left(\frac{N+1}{2}\right)^{\text {th }}$ item |
| :--- | :--- |
| Individual Series |  |

Average of two items lying on either side of $\left(\frac{N+1}{2}\right)^{\text {th }} \quad$ \{In Even Number series $\}$
$M e=$ Size of $\left(\frac{N+1}{2}\right)^{\text {th }}$ item
Determine Median Class as $\left[\frac{N}{4}\right]^{\text {th }}$ item and apply the formula:

$$
M e=I_{1}+\frac{\frac{N}{2}-\text { c.f. }}{f} \times i
$$

2. LOWER QUARTILE

Individual Series
$Q_{1}=$ Size of $\left(\frac{N+1}{4}\right)^{\text {th }}$ item
$Q_{1}=$ Size of $\left(\frac{N+1}{4}\right)^{\text {th }}$ item
Determine Quartile Class as $\left[\frac{N}{4}\right]^{\text {th }}$ item and apply the formula:

$$
Q_{1}=l_{1}+\frac{\frac{N}{4}-\text { c.f. }}{f} \times i
$$

3. UPPER QUARTILE

Individual Series

Discrete Series

Continuous Series
$Q_{3}=$ Size of $3\left(\frac{N+1}{4}\right)^{\text {th }}$ item
$Q_{3}=$ Size of $3\left(\frac{N+1}{4}\right)^{\text {th }}$ item
Determine Quartile Class as $3\left[\frac{N}{4}\right]^{\text {th }}$ item and apply the formula:

$$
Q_{3}=I_{1}+\frac{\frac{3 N}{4}-\text { c.f. }}{f} \times i
$$

Mode is the value, which occurs largest number of times.
If the frequencies are regular and homogeneous and there is a single maximum frequency, then Mode is the value corresponding to the highest frequency (Otherwise use Grouping Method)

Step 1: Determine the Modal Class: (i) By inspection, if frequencies are regular, homogeneous and there is a single maximum frequency; Otherwise (ii) Grouping Method.

Step 2: Apply the following formula: $M_{0}=I_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i$
Abbreviations of Mode, Median, Lower Quartile and Upper Quartile
$\mathrm{Me}=$ Median
$Q_{1}=$ Lower Quartile
$Q_{3}=$ Upper Quartile
$I_{1}=$ Lower limit of the median class or Quartile class or modal class
c.f. = Cumulative frequency of class preceding median or Quartile class
$f=$ Simple frequency of the median or Quartile class
$i=$ Class-interval of the median class or Quartile class or modal class
$N=$ Number of items
Mo $=$ Mode
$\mathrm{f}_{1}=$ Frequency of the modal class
$f_{0}=$ Frequency of the class preceding the modal class
$f_{2}=$ Frequency of the class succeeding the modal class

