# Weisures of Central Tendency — Median and Mode

### 9.12

### **Sumulative Series ('Less than' or 'More than')**

When the data is given in the form of "Less than" or "More than" for all items in the series, then When the data is given in the form of the simple frequency distribution, in order to find out the such data has to be converted into a simple frequency of the procedure is the second out the such data has to be converted into a single of the rest of the procedure is the same as in any frequency of the median class. Once it is done, the rest of the procedure is the same as in any other continuous series.

Examples 12, 13 and 14 would illustrate the calculation of median in 'less than' and 'more than' series,

### Example 12. Calculate the median from the following data:

| Marks        | No. of Students |
|--------------|-----------------|
| Less than 5  | 4               |
| Less than 10 | 10              |
| Less than 15 | 20              |
| Less than 20 | 30              |
| Less than 25 | 55              |
| Less than 30 | 77              |
| Less than 35 | 95              |
| Less than 40 | 100             |

#### Solution:

Since we are given the cumulative frequencies, we first find the simple frequency.

| Marks (X)               | No. of Students (f)  | c.f.      |
|-------------------------|----------------------|-----------|
| 0–5                     | 4                    |           |
| 5-10                    | 6                    | 4         |
| 10-15                   |                      | 10        |
| 15-20                   | 10                   | 20        |
|                         | 10                   | 30 (c.f.) |
| (I <sub>1</sub> ) 20–25 | 25 (f)               | 55 Median |
| 25-30                   | 22                   | 77        |
| 30–35                   | 18                   |           |
| 35-40                   | 5                    | 95        |
|                         |                      | 100       |
|                         | $N = \Sigma f = 100$ |           |

$$Me = \frac{N}{2} = \frac{100}{2} = 50^{th}$$
 item

50th item lies in the group 20-25

l<sub>1</sub> = 20, c.f. = 30, f = 25, i = 5

By applying formula:

$$Me = I_1 + \frac{\frac{N}{2} - c.f.}{f} \times i = 20 + \frac{50 - 30}{25} \times 5 = 24$$

Ans. Median = 24

### Example 13. Find out the median for the following data:

| 10–20 No. of Persons |                | Age (in years) | 1             |
|----------------------|----------------|----------------|---------------|
|                      | No. of Persons | 10-20          | Steller State |
| 10-30 8              | 8              | 10-30          |               |
| 10-40 32             | 32             | 10-40          |               |
| 10–50 54             | 54             |                |               |
| 10-60 58             | 58             |                |               |
| 10-70 66             | 66             |                |               |
| 80                   | 80             | 10-70          |               |

### Solution:

Statistics for Class XI

In the given example, the data is given in the form of cumulative series. So, it will be first converted into simple series to find the frequency of the median class.

| Age in years (X)        | No. of Persons (f) | o.f.            |  |
|-------------------------|--------------------|-----------------|--|
| 10-20                   | 8                  | 8               |  |
| 20-30                   | 24                 | 32 (q.f.)       |  |
| (I <sub>1</sub> ) 30–40 | 22 (1)             | 54 Median Class |  |
| 40-50                   | 4                  | 58              |  |
| 50-60                   | 8                  | 66              |  |
| 60-70                   | 14                 | 80              |  |
|                         | N = Σf = 80        |                 |  |

$$he = \frac{N}{2} = \frac{80}{2} = 40^{th}$$
 item

40th item lies in the group 30-40. <sup>1</sup><sub>1</sub> = 30, c.f. = 32, f = 22, i = 10 By applying formula:

$$M_{e} = I_{1} + \frac{\frac{N}{2} - c.f.}{f} \times i = 30 + \frac{40 - 32}{22} \times 10 = 33.63 \text{ years}$$

Ans. Median = 33.63 years

D.

| Age in Age in the med                                                                                              | dian of t  | he follow | ving data                                        | a:<br>30 | 40           | 50             | 60                           | 70 |
|--------------------------------------------------------------------------------------------------------------------|------------|-----------|--------------------------------------------------|----------|--------------|----------------|------------------------------|----|
| Age in years (Greater than)                                                                                        | 0          | 10        | 20                                               |          | 123          | 73             | 28                           | 0  |
| - cisons                                                                                                           | 230        | 218       | 200                                              | 165      |              |                |                              |    |
| Solution:<br>Note that it is 'more than'<br>simple frequencies.<br>Age (in yrs)<br>0-10<br>10-20<br>20-30<br>30-40 | type frequ |           | ribution. W<br>of Person<br>12<br>18<br>35<br>42 |          | e convert th | 12<br>30<br>65 | ive freque<br>:.f.<br>(c.f.) |    |

Statistics for Clar

| (I <sub>1</sub> ) 40–50 | 50 (f)       | 157 Mad         |
|-------------------------|--------------|-----------------|
| 50-60                   | 45           | 157 Medi<br>202 |
| 60-70                   | 20           | 222             |
| 70–80                   | 8            | 230             |
|                         | N = Σf = 230 |                 |

 $Me = \frac{N}{2} = \frac{230}{2} = 115^{th}$  item

115th item lies in the group 40-50 l<sub>1</sub> = 40, c.f. = 107, f = 50, i = 10 By applying formula:

$$Me = I_1 + \frac{\frac{N}{2} - c.f.}{f} \times i = 40 + \frac{115 - 107}{50} \times 10 = 41.6 \text{ year}$$

Ans. Median = 41.6 years

### Mid-Values are given

When the mid-values of class-intervals are given, then the class-intervals are found, i.e. bcalculate median, we need to first convert it into continuous series.

### Steps to convert Mid-value Series to Continuous Series

Step 1: First of all, calculate the difference between the two mid-values.

Step 2: Then, half of the difference is subtracted and added to each mid-value to find the lower and upper limits respectively of the class-intervals.

Refer Example 15 for better understanding.

| Example 15. | Compute median | from the following data: |
|-------------|----------------|--------------------------|
|-------------|----------------|--------------------------|

| Mid-Points | 115 | 105 |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |     |     |     |
|------------|-----|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|
|            | 115 | 125 | 135 | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 155 | 165 | 175 | 185 | 195 |
| Frequency  | 6   | OF  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 | 105 | 175 | 100 | 0   |
|            | U   | 25  | 48  | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 116 | 60  | 38  | 22  | 3   |
|            |     |     |     | 10 million | 110 | 00  | 30  |     |     |

Solution:

In the given example, we are given the mid-values. We need to first convert it into continuous series. Step 1: The difference between the two mid-values is 10.

Step 2: Half of the difference is:  $\frac{10}{2} = 5$ . Now, 5 is reduced and added to each mid-value to determine the

lower limit and upper limit.

It is shown in the following table:

### **Computation of Median**

| Marks   |    |             |
|---------|----|-------------|
| 110–120 | 1  | <i>c.f.</i> |
| 120–130 | 25 | 6           |
|         | 20 | 31          |

Neasures of Central Tendency — Median and Mode

|                      | 9.1              |
|----------------------|------------------|
| 48                   | 1                |
| 72                   | 79               |
| 116 (f)              | 151 (c.f.)       |
|                      | 267 Median Class |
|                      | 327              |
|                      | 365              |
|                      | 387              |
|                      | 390              |
| $N = \Sigma f = 390$ |                  |
|                      |                  |

$$Ae = \frac{N}{2} = \frac{390}{2} = 195^{th}$$
 item

195<sup>th</sup> item lies in the group 150-160

l, = 150, c.f. = 151, f = 116, i = 10

By applying formula:

$$Me = I_1 + \frac{\frac{N}{2} - c.f.}{f} \times i = 150 + \frac{195 - 151}{116} \times 10 = 153.79$$
Ans. Median = 153.79

#### Inclusive Class-Intervals

While calculating median in a continuous series with inclusive class-intervals, it is necessary to convert the series into an exclusive class-interval series.

Steps to convert Inclusive Series into an Exclusive Series upper limit of a class-interval and lower limit of the

| Step 1. Find the difference betw | ween the upper limit of a class-interval                         |
|----------------------------------|------------------------------------------------------------------|
| next class-interval.             | to the upper limit of each class-interval and subtract remaining |

half from the lower limit of each class-interval. This procedure fills up the gap Step 2. Add half of this difference to the upper li two classes and thereby we get the exclusive classes.

### This will be clear from Example 16.

| Example 16. Compu | ite median fi | rom the follow | ing data: | Frequency |  |
|-------------------|---------------|----------------|-----------|-----------|--|
|                   | y Wages (₹)   |                |           | 15<br>40  |  |
| 11                | 0–119         |                |           | 45        |  |
| 10                | 0–109         |                |           | 60        |  |
|                   | 9099          |                |           | 50        |  |
|                   | 80-89         |                |           | 40        |  |
|                   | 70–79         |                |           | 15        |  |
|                   | 60-69         |                |           |           |  |
|                   | 5059          |                |           |           |  |
|                   |               |                |           |           |  |

# lessures of Central Tendency — Median and Mode

### Solution:

9.16

ution: This is a case of inclusive class-intervals. To calculate median, it should be made exclusive and arranged

| f.        | С.  | Frequency (f) | Daily Wages (₹)             |
|-----------|-----|---------------|-----------------------------|
|           | 15  | 15            | 49.5-59.5                   |
| 1 11      | 55  | 40            | 59.5-69.5                   |
| (c.f.)    | 105 | 50            | 69.5-79.5                   |
| Median (  | 165 | 60 (f)        | (I <sub>1</sub> ) 79.5–89.5 |
| and and a | 210 | 45            | 89.5-99.5                   |
|           | 250 | 40            | 99.5-109.5                  |
|           | 265 | 15            | 109.5-119.5                 |
|           |     | N Σf = 265    |                             |

$$Me = \frac{N}{2} = \frac{265}{2} = 132.5^{th}$$
 item

132.5th item lies in the group 79.5-89.5 l<sub>1</sub> = 79.5, c.f. = 105, f = 60, i = 10 By applying formula:

$$\frac{N}{2} - c.f.$$
Me = l<sub>1</sub> +  $\frac{2}{f}$  × i = 79.5 +  $\frac{132.5 - 105}{60}$  × 10 = ₹ 84.08

Ans. Median = ₹ 84.08

### **Open-End Series**

In case of open-end classes, the lower limit of the first class and upper limit of the last class is not given. Median is known to be the best average in open-end class-interval series. In this case, there is no need to complete the class-interval and formula also remains the same. Example 17 would illustrate the point.

Example 17. Calculate the value of median from the following distribution:

| Marks (X)           | Below 10 |       |       | alouiou. |              |
|---------------------|----------|-------|-------|----------|--------------|
| No. of Students (f) | 0000010  | 10-20 | 20-30 | 30-40    | 40 and Above |
| No. of Students (I) | 3        | 13    | 18    | 44       | 5            |
| Colution            |          |       | 10    | 11       |              |

Solution:

The given data consist of open-end classes. However, to calculate the median, there is no need to complete the class-interval.

| Marks (X)               | No of Ot 1          | and the second |
|-------------------------|---------------------|------------------------------------------------------------------------------------------------------------------|
| Below 10                | No. of Students (f) | c.f.                                                                                                             |
| 10-20                   | 3                   | 3                                                                                                                |
|                         | 13                  | 16 (c.f.)                                                                                                        |
| (I <sub>1</sub> ) 20–30 | 18 (1)              | <b>16 (C.T.)</b><br>34 <b>Median Ci</b> a                                                                        |
| 30-40                   | 18 (f)              | 34 Median                                                                                                        |
| 40 and Above            |                     | 45                                                                                                               |
|                         | 5                   | 50                                                                                                               |
|                         | N Σf = 50           |                                                                                                                  |
|                         |                     |                                                                                                                  |

 $\frac{50}{2}$  = 25<sup>th</sup> item 25<sup>th</sup> item lies in the group 20-30 l<sub>i</sub>=20, c.f. = 16, f = 18, i = 10 By applying formula: N .

$$\frac{2}{10} = \frac{2}{10} \times i = 20 + \frac{25 - 16}{18} \times 10 = 25$$
 Marks

Ans. Median = 25 Marks

### Unequal Class-Intervals

When the class-intervals are unequal, there is no need to make the class-intervals equal. The frequencies need not be adjusted and the same formula will be applied as discussed before. This will be clear from the following example.

Example 18. Calculate the median of the following distribution of data:

|                 |      |       |       |       | 80-90 |
|-----------------|------|-------|-------|-------|-------|
| Class-interval  | 0-10 | 10-30 | 30-60 | 60-80 | 80-90 |
| olass-linei vai | 0-10 |       | 30    | 8     | 2     |
| Frequency       | 5    | 15    | 30    |       |       |

Solution:

In this question, the class intervals are unequal. However, to calculate median, there is no need to make class intervals

| ass-intervais equal.    |               | c.f.            |
|-------------------------|---------------|-----------------|
| Class-interval (X)      | Frequency (f) | 5               |
| 0–10                    | 5             | 20 (c.f.)       |
| 10–30                   | 15            | 50 Median Class |
| (l <sub>1</sub> ) 30–60 | 30 (f)        | 58              |
| 60-80                   | 8             | 60              |
| 80-90                   | 2             |                 |
|                         | N Σf = 60     |                 |

| $\frac{M_{\text{edian}}}{2} = \frac{N}{2} = \frac{60}{2} = 30^{\text{th}} \text{ item}$         |
|-------------------------------------------------------------------------------------------------|
| <sup>30<sup>th</sup> item lies in the group 30–60</sup>                                         |
| $I_1 = 30$ , c.f. = 20, f = 30, i = 30<br>By applying formula:                                  |
| Median = $I_1 + \frac{\frac{N}{2} - c.f.}{f} \times i = 30 + \frac{30 - 20}{30} \times 30 = 40$ |

#### SUMMARY OF MEDIAN IN SPECIAL CASES CASE 1a: Cumulative Frequency Distribution (Less Than Series): Convert it into Simple Frequency Distribution and then calculate Median in usual manner. Marks Less Less Less Less Marks Less More than 10 than 20 than 30 than 40 than 50 than 10 Students 3 7 9 16 25 Students 30 24 Marks (X) Students (f) c.f. Marks (X) 0 - 103 10 - 2010 - 204 7 20 - 3020-30 2 9 30 - 4030 - 40 7 16 40 - 5040 - 509 25 50 - 60 $N = \Sigma f = 25$ $Me = \frac{N}{2} = \frac{25}{2} = 12.5^{th} \text{ item}; \ 12.5^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th} \text{ item lies in group } 30 - 40 \qquad Me = \frac{N}{2} = \frac{30}{2} = 15^{th} \text{ item}; \ 15^{th$ 1,=30 c.f.=9 f=7 l=10 $Me = I_1 + \frac{\frac{N_2}{2} - c.f.}{f} \times i = 30 + \frac{12.5 - 9}{7} \times 10 = 35 \text{ Marks}$ CASE 2: Mid-Values are Given: When Mid-points are given, then convert such mid-values into regular Class-Intervals and then calculate Median in usual manner. into Exclusive Series. Mid-Points 5 15 25 35 45 Frequency 10 20 30 20 10 Frequency 3 Class-Intervals (X) Frequency (f) c.f. Class-Intervals (X) 0 - 1010 10 10 - 209.5 - 19.520 30 20 - 3019.5 - 29.530 60 30 - 4029.5 - 39.520 80 40 - 50 39.5 - 49.5 10 90 49.5 - 59.5 $N = \Sigma f = 90$ Me = $\frac{N}{2} = \frac{90}{2} = 45^{\text{th}}$ item; $45^{\text{th}}$ item lies in group 20 – 30 J<sub>1</sub>=20 c.f.=30 f=30 i=10 $Me = I_1 + \frac{\frac{N_2}{2} - c.f.}{f} \times i = 20 + \frac{45 - 30}{30} \times 10 = 25$ CASE 4: Open-End Series (Lower limit of first class and upper limit of last class not given): There is no need to find missing limits, i.e. calculate Median in usual manner. Class-Intervals Less 40-50 50-60 60-70 More manner. X Frequency than 70 4 f 5 6 Class-Intervals (X) Frequency (f) Class-Intervals (X) Less than 40 C.f. 0 - 53 40 - 504 7 5 - 1050 - 605 11 6 10 - 2010 60 - 7017 5 20-30 More than 70 9 22 6 30 - 5028 $N = \Sigma f = 28$ 50 - 60Me = $\frac{N}{2} = \frac{28}{2} = 14^{\text{th}}$ item; 14<sup>th</sup> item lies in group 50 - 60 1c=50 c.f = 11 f=6 l=10 $Me = I_1 + \frac{N_2 - c.f.}{f} \times i = 50 + \frac{14 - 11}{6} \times 10 = 55$ $Me = I_1 + \frac{\frac{N_2}{2} - c.f.}{f} \times i = 10 + \frac{17 - 8}{10} \times 10 = 19$

#### CASE 1b: Cumulative Frequency Distributio (More Than Series): Convert it into Simple Frequency Distribution and then calculate Median in usual frequency. More More than 30 than 40 than 50 More than 20 11 Students (f) C.f. 6 8 6 14 5 19 26 Λ 30 $N = \Sigma f = 30$ I1 = 30 C.f. = 14 1=5 1= 10 $Me = I_1 + \frac{\frac{12}{2} - c.f.}{f} \times i = 30 + \frac{15 - 14}{5} \times 10 = 32 \text{ Marks}$ CASE 3: Inclusive Class-Intervals (Classes of type 10-19, 20-29 are given): Convert Inclusive Class-Intervals Class-Intervals 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 9 8 7 13 Frequency (f) c.f. 3 3 9 12 8 20 7 27 40 13 $N = \Sigma f = 40$ Me = $\frac{N}{2} = \frac{40}{2} = 20^{\text{th}}$ item; 20<sup>th</sup> item lies in group 29.5-39.5 1,=29.5 c.f.=12 f=8 i=10 $Me = I_1 + \frac{\frac{N_2 - c.f.}{f}}{f} \times i = 29.5 + \frac{20 - 12}{8} \times 10 = 39.5$ CASE 5: Unequal Class-Intervals There is no need to make class-intervals equal, i.e. calculate Median in usue 0-5 5-10 10-20 20-30 30-50 50-60 3 5 10 9 c.f. Frequency (f) 8 18 27 31 34 $N = \Sigma f = 34$ Me = $\frac{N}{2} = \frac{34}{2} = 17^{\text{th}}$ item; $17^{\text{th}}$ item lies in group $10^{-20}$ <sup>f</sup>1 = 145 14=10 cl=8 f=10 1219

Measures of Central Tendency — Median and Mode

## calculation of Missing Frequencies

calculation on more than one frequency is missing, then it is possible to find out the missing when one or more than one frequency is missing.

### Steps to Determine Missing Frequency

Step 1. Represent missing frequencies by  $f_1$  or  $f_2$  as the case may be.

step 2. Apply the formula for calculation of median. In this process, we get an equation which gives us the missing frequencies.

Examples 19 and 20 would clarify the procedure.

Example 19. The following table gives the distribution of monthly salary of 900 employees However, the frequencies of the classes 40–50 and 60–70 are missing. If the median of the distribution is 759.25, find the missing frequencies.

| Salaries(₹ in '000) | 30-40 | 40–50 | 50-60 | 60-70 | 70-80 |
|---------------------|-------|-------|-------|-------|-------|
| No. of Employees    | 120   | ?     | 200   | ?     | 185   |

Solution:

Let f1 and f2 be the frequencies of the classes 40 - 50 and 60 - 70 respectively

| No. of Employees (f) | c.f.                 |
|----------------------|----------------------|
| 120                  | 120                  |
| fı                   | 120 + f <sub>1</sub> |
| 200                  | 320 + f <sub>1</sub> |
| 1                    | $320 + f_1 + f_2$    |
| -                    | 900                  |
|                      |                      |
|                      |                      |

Median =  $\frac{N}{2} = \frac{900}{2} = 450^{\text{th}}$  item

 $^{450^{th}}$  item lies in the group 50–60 (Given median = 59.25)  $l_1 = 50$ , c.f. = 120 + f<sub>1</sub>, f = 200, i = 10

$$\frac{\frac{N}{2} - c.f.}{\frac{M}{2} - c.f.} \times$$

$$\frac{59.25}{200} = 50 + \frac{450 - (120 + f_1)}{200} \times 10$$

 $\frac{^{59.25}}{^{200} \div 10} = 50 + \frac{450 - (120 + f_1)}{200 \div 10}$  $^{9.25} \times 20 = 330 - f_1$ 

From summation of frequencies, we have:  $^{120} + f_1 + 200 + f_2 + 185 = 900$ 

Putting the value of f1, we get:  $120 + 145 + 200 + f_2 + 185 = 900$ i.e. f<sub>2</sub> = 250 Ans. Frequency of class 40 – 50 ( $f_1$ ) = 145; Frequency of class 60 – 70 ( $f_2$ ) = 250

Example 20. An incomplete distribution is given below:

| Marks           | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80  |
|-----------------|-------|-------|-------|-------|-------|-------|--------|
| No. of Students | 24    | 60    | ?     | 130   | ?     | 50    | 36 AFO |

You are given that the median value is 47. Using the median formula, fill up missing frequencies.

### Solution:

Let f1 and f2 be the frequencies of the classes 30 - 40 and 50 - 60 respectively.

| C.f.                | No. of Students (f) | Marks (X) |
|---------------------|---------------------|-----------|
| 24                  | 24                  | 10-20     |
| 84                  | 60                  | 20-30     |
| 84 + f <sub>1</sub> | f <sub>1</sub>      | 30-40     |
| $214 + f_1$         | 130                 | 40–50     |
| $214 + f_1 + f_2$   | f2                  | 50-60     |
| $264 + f_1 + f_2$   | 50                  | 60-70     |
|                     | 36                  | 70-80     |
| 458                 | N Σf = 458          |           |

Median = 
$$\frac{N}{2} = \frac{458}{2} = 229^{th}$$
 item

229<sup>th</sup> item lies in the group 40 - 50 (Given median = 47)  $l_1 = 40, c.f. = 84 + f_1, f = 130, i = 10$  $Me = I_1 + \frac{\frac{N}{2} - c.f.}{f} \times i$  $47 = 40 + \frac{229 - (84 + f_1)}{130} \times 10$  $47 = 40 + \frac{229 - (84 + f_1)}{130 \div 10}$ 

$$7 \times 13 = 145 - f_1$$
  
 $f_1 = 54$ 

From summation of frequencies, we have:  $24 + 60 + f_1 + 130 + f_2 + 50 + 36 = 458$ Putting the value of f<sub>1</sub>, we get: 24 + 60 + 54 + 130 + f<sub>2</sub> + 50 + 36 = 458 i.e. f2 = 104 Ans. Frequency of class 30–40 ( $f_1$ ) = 54; Frequency of class 50–60 ( $f_2$ ) = 104

-----

# Neasures of Central Tendency — Median and Mode

# GRAPHIC LOCATION OF MEDIAN

9.5 GHAT the easily located graphically with help of Ogives (cumulative frequency curve). Median can be done with the help of any of the two methods: (i) 'Less than' and 'More than' Ogive This can be done with the help of any of the two methods: (i) 'Less than' and 'More than' Ogive This can be in the indicated of the indi

### less than' and 'More than' Ogive Method

Less (ner 'Less than' and one 'more than') from the given data.

Step 2. From the point of intersection of the two ogives, draw a line parallel to the Y-axis. The point where the line cuts the X-axis, is the Median value.

The following example will make this method more clear.

symple 21. Determine the median graphically from the data given below:

| Anne            |      |       |       | 0     |       |       |
|-----------------|------|-------|-------|-------|-------|-------|
| Marks           | 0–10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
| No. of Students | 3    | 9     | 18    | 30    | 18    | 12    |

#### Solution:

In order to calculate median by 'Less than' and 'More than' ogive method, we have to convert the series in cumulative frequency of 'less than' and 'more than' series.

| Marks        | No. of Students | Marks        | No. of Students |
|--------------|-----------------|--------------|-----------------|
| Less than 10 | 3               | More than 0  | 90              |
| Less than 20 | 12              | More than 10 | 87              |
| Less than 30 | 30              | More than 20 | 78              |
| Less than 40 | 60              | More than 30 | 60              |
| Less than 50 | 78              | More than 40 | 30              |
| Less than 60 | 90              | More than 50 | 12              |

On the basis of tables of 'less than' and 'more than', two Ogive curves are drawn:



9.20

From the point of intersection (point E), a perpendicular (dotted line in the figure) is drawn on the X-axis. The dotted line cuts the X-axis at 35. Hence the median is 35 marks. Ans. Median = 35 Marks

### ess than' or 'More than' Ogive Method

In this method, the frequency distribution is converted into either a 'less than' or 'more  $t_{han'}$ In this method, the frequency distribution of the median is determined from the Ogive so  $dr_{awn}$ . Step 1. Draw only one ogive: Either by 'less than' method or by 'more than' method.

Step 2. Plot the values of the variable on X-axis and the cumulated values (less than) on the Y-axis.

Step 3. Find the Median item as: (Me) = Size of  $\left|\frac{N}{2}\right|^{dt}$  item

{Where Me = Median and N = Total of frequency}

- Step 4. Locate the median item on the Y-axis and from this draw a line parallel to the X-axis to intersect the ogive.
- Step 5. Draw a perpendicular line from this point of intersection on the X-axis. The point where the line cuts the X-axis, is the Median value.

Let us understand this with the help of Example 22 ('less than' Ogive) and Example 23 ('more than' Ogive).

Example 22. Determine the value of median graphically by 'less than' ogive with the information given in Example 21.

90

80

70

60

50

40

30

20

10

#### Solution:

In order to calculate median by 'Less than' ogive method, we have to convert the series in cumulative frequency of 'less than' series.



On the basis of table of 'less than', one Ogive curve is drawn:

Me 
$$= \frac{N}{2} = \frac{90}{2} = 45^{th}$$
 item

Graphic Location of Median 'Less than' Ogive Method Scale: 1 Cm = 10 Marks on X-axis 1 Cm = 10 Students on Y-axis 30 Median = 35

> 60 50 40

Marks

Marks Now, a perpendicular line drawn from paint E - to to the figure) intersects the ogive at point E. Now, a perpendicular line drawn from point E cuts the X-axis at 35. Hence the median is 35 marks. Ans. Median = 35 Marks

10

20

30

### Measures of Central Tendency — Median and Mode

Example 23. Determine the value of median graphically by 'more than' ogive with the information given in Example 21.

### Solution:

In order to calculate median by 'More than' ogive method, we have to convert the series in cumulative frequency of 'more than' series.





Locating 45 on the Y-axis and a parallel line from 45 (dotted line in the figure) intersects the ogive at point E. Now, a perpendicular line drawn from point E cuts the X-axis at 35. Hence the median is 35 marks. Ans. Median = 35 Marks

### 9.6 PROPERTIES OF MEDIAN

Me =  $\frac{N}{2} = \frac{90}{2} = 45^{\text{th}}$  item

- 1. The sum of deviations of items from median, ignoring signs, is the minimum. For example, the median of 4, 6, 8, 10, 12 is 8. Now, deviations from 8 (ignoring signs) are 4, 2, 0, 2, 4. The total of these deviations is 12. This total is smaller than the one obtained if deviations are taken from any other value. If deviations are taken from 7, the deviations ignoring signs would be 3, 1, 1, 3, 5 and the total 13. This property implies that median is centrally located.
- 2. Median is a positional average and hence it is not influenced by the extreme values.

### 9.7 MEAN VS MEDIAN

- 1. Ease in Calculations: Median is easier to calculate as compared to mean.
- 2. Fluctuations in Sample: The general fluctuations of sampling affect the median to a greater extent by such extent than the mean (however, at times mean might be affected to a greater extent by such

3. Algebraic Treatment: Mean is definitely superior to median in terms of further algebraic treatment.

- treatment: It is possible to find out the combined mean, but not the combined median. 4. Open-end classes: Mean cannot be determined in case of open-end distribution, whereas,
- median can be easily calculated.

9.22

AND I

- 5. Effect of Extreme values: Median may be more representative than the arithmetic average due to the fact that it is not affected by the values of extreme items.
- **6.** Graphic presentation: The value of median can be determined graphically, where  $a_{s}$  the value of mean cannot be graphically ascertained.

### 9.8 MERITS AND DEMERITS OF MEDIAN

### Merits of Median

- 1. Simplicity: Edian is easy to calculate and simple to understand. In many situations, the median can be located simply by inspection.
- 2. Ideal average: Median is defined rigidly, i.e. median has definite and certain value.
- 3. Graphic presentation: The value of median can also be determined graphically with the help of ogive curves.
- 4. Unaffected by extreme values: The extreme values in the data set do not affect the calculation of the median value.

For example, median of 10, 20, 30, 40 and 150 would be 30, whereas the mean will be 50. So, median in such cases is a better average.

- 5. Possible even in case of incomplete data: Median can be calculated even when the data is incomplete. For example, in case of irregular class-interval or open-end distribution, median can be easily calculated.
- 6. Appropriate for qualitative data: Median can be used to deal with qualitative characteristics which cannot be measured quantitatively.

For example, it is not possible to measure intelligence quantitatively. However, it is possible to locate an individual having average intelligence by arraying a group of persons in ascending or descending order of intelligence.

### emerits of Median

1. Not based on all observations: Median, being a positional average, is not based on each and every item of the distribution.

For example, the median of 10, 25, 50, 60 and 65 is 50. If we replace the observations 10 and 25 by any two values smaller than 50 and replace 60 and 65 with two values greater than 50, then value of the median will remain same.

- Affected by fluctuations in sampling: It is affected by the fluctuations of sampling. Thus, if class-intervals are not uniform, the value of median becomes inappropriate.
- 3. Lack of further algebraic treatment: The median is not capable of algebraic treatment. For example, median cannot be used for determining combined median of two or more groups as is possible in case of mean.

## Measures of Central Tendency — Median and Mode

Arrangement required: Since median is an average of position, therefore arranging the Arrangements of descending order of magnitude is time consuming in case of large number of observations.

5. Unrealistic assumption in case of grouped distribution: The formula for the computation of median, in case of grouped frequency distribution, is based on the assumption that the of median class are uniformly distributed. This assumption is rarely met in practice.



### 9.9 APPLICATIONS OF MEDIAN

The median is helpful in understanding the characteristic of a data set when:

1. Observations are qualitative in nature;

2. Extreme values are present in the data set;

3. A quick estimate of an average is desired.

9.10 QUARTILES

Median is a value which splits the series in two equal parts. Similarly, there are other positional values, which *divide* a series in a number of parts. The most common positional values besides median are Quartiles.

Quartiles divide a series into four equal parts. For any series, there will be three quartiles as <sup>shown</sup> by the following figure:



3. Third or Upper Quartile ( $Q_3$ ):  $Q_3$  divides the distribution in such a way that three-fourth (75%) of total items fall below it and one-fourth (25%) fall above it.

### Percentiles – For Knowledge Enrichment

- The percentile values divide the distribution into 100 parts each containing 1 per cent of the observations.
- There are, in all, 99 percentiles denoted as P<sub>1</sub>, P<sub>2</sub>, ..... P<sub>99</sub> respectively. P<sub>50</sub> is the median value.
- If you have secured 60 percentile in an examination, it means that your position is below 40 percent of total candidates appeared in the examination.

### 9.11 COMPUTATION OF QUARTILES

The computation of quartiles is done exactly in the same manner as the computation of the Median. While calculating  $Q_1$  and  $Q_2$ , the series have to be arranged in ascending or descending order as in case of median.

### Individual Series

In case of individual peries, the values of lower quartile (Q<sub>1</sub>) and upper quartile (Q<sub>3</sub>) would be the size of  $\left[\frac{N+1}{4}\right]^n$  and 3  $\left[\frac{N+1}{4}\right]^{th}$  item respectively.

Example 24. From the data given below, calculate lower quartile  $(Q_1)$  and upper quartile  $(Q_3)$ :Pocket money (in ₹)4635285254433549465041

Solution:

| S. No. | er Quartile (Q <sub>1</sub> ) and Upper Quartile (Q <sub>3</sub> )<br>Pocket money (in ₹) arranged in ascending orde |
|--------|----------------------------------------------------------------------------------------------------------------------|
| 1      | 28                                                                                                                   |
| 2      |                                                                                                                      |
| 3      | 35                                                                                                                   |
| 4      | 35                                                                                                                   |
| 5      | 41                                                                                                                   |
| 6      | 43                                                                                                                   |
| 7      | 46                                                                                                                   |
| 8      | 46                                                                                                                   |
|        | 49                                                                                                                   |
| 9      | 50                                                                                                                   |
| 10     |                                                                                                                      |
| 11     | 52                                                                                                                   |
| N = 11 | 54                                                                                                                   |

### Measures of Central Tendency — Median and Mode



Ans. Lower Quartile (Q1) = ₹ 35; Upper Quartile (Q3) = ₹ 50

Example 25. Calculate first quartile and third quartile from following data:

| Marks of Students | 60 | 38 | B 46 |    | 0  |    |     |    |  |
|-------------------|----|----|------|----|----|----|-----|----|--|
| Marks of Students | 00 | 00 |      | 43 | 50 | 58 | CE. | 00 |  |
|                   |    |    |      |    |    | 50 | 00  | 69 |  |

Solution:

Arranging marks in ascending order, we get: 38, 43, 46, 50, 58, 60, 65, 69

Calculation of Lower Quartile (Q1)

$$Q_1 = \text{Size of } \left[\frac{N+1}{4}\right]^{\text{th}}$$
 item = Size of  $\left[\frac{8+1}{4}\right]^{\text{th}}$  item = Size of 2.25<sup>th</sup> item

Size of 2.25th item = Size of 2nd item + .25 times (Size of 3rd item - Size of 2nd item)

Size of  $2.25^{\text{th}}$  item = 43 + .25 (46 - 43) = 43 + .75 = 43.75

Calculation of Upper Quartile (Q<sub>3</sub>)

$$\begin{aligned} &Q_3 = \text{Size of } 3\left[\frac{N+1}{4}\right]^{\text{th}} \text{ item = Size of } 3\left[\frac{8+1}{4}\right]^{\text{th}} \text{ item = Size of } 6.75^{\text{th}} \text{ item } \end{aligned}$$

$$\begin{aligned} &\text{Size of } 6.75^{\text{th}} \text{ item = Size of } 6^{\text{th}} \text{ item } + .75 \text{ times } (\text{Size of } 7^{\text{th}} \text{ item } - \text{Size of } 6^{\text{th}} \text{ item } ) \end{aligned}$$

$$\begin{aligned} &\text{Size of } 6.75^{\text{th}} \text{ item } = 60 + .75 (65 - 60) = 60 + .75 (5) = 63.75 \\ &Q_3 = 63.75 \text{ marks} \end{aligned}$$

$$\begin{aligned} &\text{Ans. Lower Quartile } (Q_1) = 43.75 \text{ marks; Upper Quartile } (Q_3) = 63.75 \text{ marks} \end{aligned}$$

$$\begin{aligned} &\text{Size of discrete series also, the values of lower quartile } (Q_1) \text{ and upper quartile } (Q_3) \text{ would} \end{aligned}$$

$$\begin{aligned} &P^e \text{ the Size of } \left[\frac{N+1}{4}\right]^{\text{th}} \text{ and } 3\left[\frac{N+1}{4}\right]^{\text{th}} \text{ items respectively. However, for value of N, the cumulative } Pequency is calculated. \\ &The following example will illustrate this. \end{aligned}$$

```
Statistics for Class XI
```

## Neasures of Central Tendency — Median and Mode

**Example 26.** From the following, compute  $Q_1$  and  $Q_3$ .

| X | 10 | 20 | 30 | 40 | 50 | 60   |
|---|----|----|----|----|----|------|
| f | 2  | 3  | 5  | 10 | 5  | 3 70 |

Solution:

We first calculate the cumulative frequency:

| C.f. | Contraction of the state of the | X  |
|------|---------------------------------|----|
| 2    | 2                               | 10 |
| 5    | 3                               | 20 |
| 10   | 5                               | 30 |
| 20   | 10                              | 40 |
| 25   | 5                               | 50 |
| 28   | 3                               | 60 |
| 30   | 2                               | 70 |
| 50   | $N = \Sigma f = 30$             |    |

### Calculation of Lower Quartile (Q1)

$$Q_1 = \text{Size of } \left[\frac{N+1}{4}\right]^{\text{th}}$$
 item = Size of  $\left[\frac{30+1}{4}\right]^{\text{th}}$  item = Size of 7.75<sup>th</sup> item

7.75<sup>th</sup> item falls in the cumulative frequency of 10 and the size against this cumulative frequency is 30. Therefore,  $Q_1$  is 30.

### Calculation of Upper Quartile (Q<sub>3</sub>)

$$Q_3 = \text{Size of } 3 \left[ \frac{N+1}{4} \right]^{\text{th}}$$
 item = Size of  $3 \left[ \frac{30+1}{4} \right]^{\text{th}}$  item = Size of 23.25<sup>th</sup> item

23.25<sup>th</sup> item falls in the cumulative frequency of 25 and the size against this cumulative frequency is 50. So,  $Q_3$  is 50.

Ans. Lower Quartile  $(Q_1) = 30$ ; Upper Quartile  $(Q_3) = 50$ 

### Continuous Series

In case of continuous series, the lower quartile (Q<sub>1</sub>) is the 
$$\left[\frac{N}{4}\right]^{\text{th}}$$
 item and the exact value of Q<sub>1</sub> is calculated by the following formula:

$$Q_1 = I_1 + \frac{\frac{N}{4} - c.f.}{f} \times i$$

Where,  $I_1 =$  Lower limit of the quartile class; c.f. = Cumulative frequency of the class preceding quartile class; f = Simple frequency of the quartile class; I = Class-internal of the quartile class.

Similarly, the **upper quartile** (**Q**<sub>3</sub>) is the 3 
$$\left[\frac{N}{4}\right]^{\text{th}}$$
 item and the exact value of **Q**<sub>3</sub> is calculated by the following formula:

 $Q_3 = I_1 + \frac{\frac{3N}{4} - c.f.}{f} \times i$ 

Let us understand the calculations of  $Q_1$  and  $Q_3$  with the help of following example.

mple 27. With the help of following details calculate

| Example =       | -          | 0 40 | and, calcula | e lower quan | 41. 1                     |       |  |  |
|-----------------|------------|------|--------------|--------------|---------------------------|-------|--|--|
| Marks           | 0-10 10-20 |      | 20-30        | on in        | rtile and upper quartile. |       |  |  |
| No. of Students | 16         | 14   | 23           | 30-40        | 40-50                     | 50-60 |  |  |
| NO. OF CICCO    |            |      | 20           | 17           | 7                         | 3     |  |  |

Solution:

| Marks (X) | No. of Students (f) | The Association of the second |
|-----------|---------------------|-------------------------------|
| 0-10      |                     | C.f.                          |
|           | 16                  | 16                            |
| 10-20     | 14                  | 30                            |
| 20–30     | 23                  | 53                            |
| 30-40     | 17                  | 70                            |
| 40-50     | 7                   | 77                            |
| 50-60     | 3                   | 80                            |
|           | N = Σf = 80         |                               |

### Calculation of Lower Quartile (Q1)

$$Q_1 = \frac{N}{4} = \frac{80}{4} = 20^{\text{th}} \text{ item}$$

20th item lies in the group 10-20

l<sub>1</sub> = 10, c.f. = 16, f = 14, i = 10

By applying formula:

$$Q_1 = I_1 + \frac{N}{4} - c.f.$$
  
 $f = 10 + \frac{20 - 16}{14} \times 10 = 12.86$  Marks

Q<sub>1</sub> = 12.86 marks

<sup>Calculation</sup> of Upper Quartile (Q<sub>3</sub>)

$$Q_{3} = \frac{3N}{4} = \frac{240}{4} = 60^{\text{th}} \text{ item}$$

$$^{60^{\text{th}}} \text{ item lies in the group 30-40}$$

$$I_{1} = 30, \text{ c.f.} = 53, \text{ f} = 17, \text{ i} = 10$$

$$Q_{3} = I_{1} + \frac{3N}{4} - \text{ c.f.}$$

$$Q_{3} = I_{1} + \frac{4}{f} \times \text{ i} = 30 + \frac{60 - 53}{14} \times 10 = 34.12 \text{ marks}$$

$$Q_3 = 34.12$$
 marks  
Ans. Lower Quartile (Q<sub>3</sub>) = 12.86 marks; Upper Quartile (Q<sub>3</sub>) = 34.12 marks

9.29

2.

AND I

Neasures of Central Tendency — Median and Mode

Example 28. Calculate the value of lower quartile, median and upper quartile from the following data:

| Class-interval (less then)                                                                                       | 10 | 20 | 30  | 40  |     |
|------------------------------------------------------------------------------------------------------------------|----|----|-----|-----|-----|
| Frequency                                                                                                        | 22 | 60 | 106 | 141 | 50  |
| And the second |    |    |     |     | 161 |

#### Solution:

ation: In the given example, the data is given in the form of cumulative series. So, it will be first converted into simple series to calculate the median class and quartiles class.

| c.f. | Frequency (f) | Class-Interval (X) |
|------|---------------|--------------------|
| 22   | 22            | 0-10               |
| 60   | 38            | 10-20              |
| 106  | 46            | 20-30              |
| 141  | 35            | 30-40              |
| 161  | 20            | 40-50              |
|      | N = Σf = 161  |                    |

### Calculation of Lower Quartile (Q.)

 $Q_1 = \frac{N}{4} = \frac{161}{4} = 40.25^{\text{th}}$  item 40.25th item lies in the group 10-20

L = 10, c.f. = 22, f = 38, i = 10

#### By applying formula:

$$Q_1 = I_1 + \frac{\frac{N}{4} - c.f.}{f} \times i = 10 + \frac{40.25 - 22}{38} \times 10 = 14.80$$
  
 $Q_1 = 14.80$ 

#### Calculation of Median (Me

$$Me = \frac{N}{2} = \frac{161}{2} = 80.5^{th}$$
 item

80.5<sup>th</sup> item lies in the group 20-30

L = 20, c.f. = 60, f = 46, i = 10

$$Me = l_1 + \frac{\frac{N}{2} - c.t.}{f} \times i = 20 + \frac{80.5 - 60}{46} \times 10 = 24.45$$
  
Median = 24.45

Calculation of Upper Quartile (Q<sub>1</sub>)

$$Q_3 = \frac{3N}{4} = \frac{483}{4} = 120.75^{\text{m}}$$
 item

120.75th item lies in the group 30-40 I<sub>1</sub> = 30, c.f. = 106, f = 35, i = 10



 $Q_3 = I_1 + \frac{\frac{3N}{4} - c.f.}{f} \times i = 30 + \frac{120.75 - 106}{35} \times 10 = 34.21$ 

 $Q_2 = 34.21$  $Q_3 = 34.2$  Ans. Lower Quartile (Q<sub>1</sub>) = 14.80; Median = 24.45; Upper Quartile (Q<sub>3</sub>) = 34.21

9.12 MODE

g12 mode is another important measure of central tendency, which is conceptually very useful. Mode is the value occurring most frequently in a set of observations and around which other Actually the word 'mode' has been derived from the French word 'La Mode' which signifies from very the most fashionable values of a distribution, because it is repeated the highest number of times in the series. Thus Mode is the value which occur the largest number of times in a series. Example: If the shoe size of 10 people is: 8, 9, 7, 9, 10, 9, 10, 9, 11, 8; mode can be conveniently found by arranging the observations in an ascending order (7, 8, 8, 9, 9, 9, 9, 10, 10, 11) and counting the number of times each observation occurs. Mode size of shoes is 9 as it occur the maximum number of times (four times).

#### **Definitions of Mode**

In the words of A.M. Tuttle, "Mode is the value which has the greatest frequency density in its immediate neighborhood".

In the words of Croxton and Cowden, "Mode of a distribution is the value at the point around which the items tend to be most heavily concentrated".

### Important Points about Mode

- Mode is extensively used to measure taste and preferences of people for a particular brand of the commodity.
- In case of frequency distribution, mode is determined by the value corresponding to maximum frequency.
- The value of mode is denoted by the symbol 'Z'.
- \* Mode is preferable to mean and median when it is desired to know the most typical value Value. For example, the most common size of shoes, the most common size of a ready-made garment, the most common size of pocket expenditure of a student, the most popular

A distribution can either be uni-modal, bi-modal or multi-modal. However, if each observer. observation can either be uni-modal, bi-modal of initial of the server is no mode in that distribution occurs the same number of times in a series, then there is no mode in that

- (i) No Modal Value: When each observation occur the same number of times in a series;
   (ii) 11... distribution.
- (ii) Uni-modal: When one item occur the maximum number of times;

9.30

- (iii) Bi-modal: When two items have the same maximum frequency;
- (iv) Multi-modal: When more than two items have the same maximum frequency.

### Mode with Frequency Curve

If the nature of mode is to be explained graphically, it is obvious that the mode would  $b_{e the}$ point of maximum frequency which is indicated by the peak of a frequency curve.



In the given diagram, X-axis denotes the value of variable and Y-axis the corresponding frequencies. Mode is that value on the X-axis, which correspond to the maximum frequency on the Y-axis.

### 9.13 CALCULATION OF MODE

The value of mode can be calculated in the following series:

1. Individual Series

2. Discrete Series

### 3. Continuous Series

### Individual Series

- There are two methods of finding out mode in an individual series:
- 1. By Observation;
- 2. By Converting individual series into a Discrete Series, *i.e*, by frequency distribution.

### Mode by Way of Observation

Through observation, one can notice the occurrence of items in a distribution. Step 1. Arrange the data in ascending or descending order. Step 2. The item which occurs most in the series is 'Mode'.

| Height (in inches) | the h      | neigh | ts of | 15 sti | Ident | s, cal | lculat | e the | valu | e of r | node |    |       | /  |
|--------------------|------------|-------|-------|--------|-------|--------|--------|-------|------|--------|------|----|-------|----|
| Height (in inches) | 52         | 50    | 66    | 70     | 66    | 72     | 71     | 00    | varu | e or r | noue |    | 48 60 | 65 |
| Colution           | 100 100 01 |       |       |        |       | 12     | 11     | 00    | 60   | 67     | 69   | 67 | 40    |    |

66

Solution:

#### By arranging the series in an ascending order, we get: 48 50

52 60 60 65

By observation, height 66 inches occurs most, therefore, the mode (Z) is 66 inches.

66

67

71

70

### Measures of Central Tendency — Median and Mode

### Mode by Converting Individual Series into Discrete Series

Mode by con-fourmber of items in an individual series are more, then the individual series can be converted If number of real series. Mode is then calculated as the value corresponding to the highest frequency. Example 30. Calculate the value of Mode from the data given in Example 29 by converting the

Solution:

| Heights (in inches) |           |
|---------------------|-----------|
| 48                  | Frequency |
| 50                  | 1         |
| 52                  | 1         |
| 60                  | 1         |
| 65                  | 2         |
|                     | 1         |
| (                   | 3         |
| 67                  | 2         |
| 69                  | 1         |
| 70                  | 1         |
| 71                  | 1         |
| 72                  | 1         |
| Total               | 15        |

The height of 66 inches has the maximum frequency. Therefore, mode height, i.e. (Z) is 66. Ans. Mode = 66 inches

Example 31. Find out the mode from the followings figures by: (i) Observation Method; (ii) Frequency distribution Method.

| 5-2 |    | -  |    |    |    |    |    | _  |    |    |    |    |    |    | 00 | 57 |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 5/  | 50 | 60 | 65 | 00 | 40 | 40 | 62 | 70 | 60 | 53 | 57 | 63 | 53 | 5/ | 00 | 5/ |
|     |    | 00 | 00 | 80 | 40 | 43 | 03 | 10 |    |    |    |    |    |    |    |    |

Solution:

4

### (I) Observation Method

By arranging the series in an ascending order, we get:

| 0 43 | 50 | 53 | 53 | 57 | 57 | 57 | 57 |
|------|----|----|----|----|----|----|----|
|      |    | 00 | 50 | 0. |    |    |    |

By observation, 57 occurs most, therefore, the mode (Z) is 57. (ii) Freque

| tribution Method<br>but mode we have to convert the ir | Frequency |
|--------------------------------------------------------|-----------|
| Items                                                  | 1         |
| 40                                                     | 1         |
| 43                                                     | 1         |
| 50                                                     | 2         |
| 53                                                     | 4         |
| (BT)                                                   |           |

9.32

9.33

65 70

63

60 63

60 60

80

### Statistics for Class XI

| 60    | 3  |
|-------|----|
| 63    | 2  |
| 65    | 1  |
| 70    | 1  |
| 80    | 1  |
| Total | 17 |

Item 57 occurs the largest number of times. So, mode (Z) = 57. Ans. Mode = 57

### **Discrete Series**

There are two methods to determine mode in a discrete series:

- (i) Mode by Observation, known as Inspection Method
- (ii) Mode by Grouping Method.

Let us discuss these two methods in detail:

### (i) Mode by Observation

The mode can be determined by inspection if:

- Frequencies are regular and homogeneous; and
- There is only one item which has the maximum frequency.

In such a case, the value corresponding to the highest frequency would be the modal value. This is illustrated in the Example 32. Mode

### Example 32. Find out mode of the following series.

| The second s |     |     | B series. |       |     |     |
|----------------------------------------------------------------------------------------------------------------|-----|-----|-----------|-------|-----|-----|
| Daily Wages (in ₹)                                                                                             | 100 | 110 | 120       | 130   | 140 | 150 |
| No. of persons                                                                                                 | 0   |     | 120       | / 130 | 140 | 100 |
|                                                                                                                | 2   | 4   | 8         | / 10  | 5   | 4   |
| Solution                                                                                                       |     |     |           |       | -   |     |

### Solution

By inspection, we can see that 130 occurs most frequently in the series, hence modal daily wages = ₹ 130.

### (ii) Mode by Grouping Method

If the frequency distribution is irregular and heterogeneous, then it is not necessary that mode is always the value which occurs most frequently or whose frequency is the maximum. In such cases, Grouping Method is generally used for obtaining the mode.

- According to grouping method, 2 tables are prepared to determine the modal value:
- 1. Grouping Table: In this first table, groupings of frequencies are presented in six columns. 2. Analysis Table: In this second table, occurrence of frequencies or values in various groupings are written and added. Modal value is the value which occurs in the maximum number of groupings.

### Weasures of Central Tendency — Median and Mode

### Steps of Grouping Method

steps of columns, in addition to a column for various values of X. Column 1: Write the frequencies against various values of X, as given in the question; Column 2: Group frequencies in two's starting from the top. Find out their total and mark the

Column 3: Group frequencies in two's starting from the second frequency (i.e. first frequency is left out). Find out their total and mark the highest total;

Column 4: Group frequencies in three's starting from the top. Find out their total and mark the highest total;

Column 5: Group frequencies in three's starting from the second frequency (i.e. first frequency is left out). Find out their total and mark the highest total;

Column 6: Group frequencies in three's starting from the third frequency (i.e. first and second frequencies are left out). Find out their total and mark the highest total.

The highest frequency total in each of the six columns is identified and analysed in the Analysis Table, to determine mode.

Example 33. Calculate the value of Mode from the data given in Example 32 by grouping method. Solution:

First of all, grouping of the data is done.

**Grouping Table** 

| Wages<br>in ₹(X)  | No. of<br>Persons (f) | In Tv              | In Two's           |                | In Three's     |                    |  |  |
|-------------------|-----------------------|--------------------|--------------------|----------------|----------------|--------------------|--|--|
| 100               | Column I              | Column II          | Column III         | Column IV      | Column V       | Column VI          |  |  |
| 100<br>110        | 2<br>4                | } 2+4=6            | <pre>4+8=12</pre>  | 2+4+8=14       | ]              |                    |  |  |
| 120<br>130<br>140 | 8<br>10               | 8 + 10 = <b>18</b> | }                  | )<br>10+5+4=19 | 4+8+10<br>= 22 | 8 + 10 + 5<br>= 23 |  |  |
| 150               | 5<br>4                | 5+4=9              | <pre>10+5=15</pre> | 10+5+4=13      |                | toblo we ente      |  |  |

After having prepared Grouping Table, we are required to prepare an Analysis Table. In this table, we enter the value the values having maximum frequencies in each column of Grouping Table by mean of ticks (🗸) as follows:



|      |   |   | 1 | 1 |
|------|---|---|---|---|
| V    |   | 1 | 1 |   |
| V    | • | 1 | 1 | 1 |
| VI   |   |   | 6 | 2 |
| otal | 1 | 3 | U | J |

Since the value 130 has occurred the maximum number of times i.e. 6, the modal income is ₹ 130.

Ans. Mode = ₹ 130

### Example 34. Find out mode of the following series.

| Size      | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|-----------|---|---|----|----|----|----|----|----|
| Frequency | 5 | 6 | 8  | 7  | 9  | 8  | 9  | 6  |

### Solution.

0 26

The frequencies of two items: 12 and 14 have the highest frequency of 9. So, grouping of frequencies is essential. The method of grouping will be used for determination of mode.

**Grouping Table** 

| Size | Frequency (f) | In T        | wo's       | In Three's |          |           |  |
|------|---------------|-------------|------------|------------|----------|-----------|--|
| (X)  | Column I      | Column II   | Column III | Column IV  | Column V | Column VI |  |
| 8    | 5             | 1 11        |            | 1          |          |           |  |
| 9    | 6             | } 11        | 14 ک       | 19         | 1        |           |  |
| 10   | 8             | } 15        | }          | J          | 21       | 1         |  |
| 11   | 7             | ۱ <u>۵</u>  | } 16       | 1          | J        | 24        |  |
| 12   | 9             | } 17        | \$ 10      | 24         | 1        | J         |  |
| 13   | 8             | {   ''      | 1          | )          | 26       | )         |  |
| 14   | 9             | } 15        | } 17       |            | ]        | 23        |  |
| 15   | 6             | <b>j</b> 15 |            |            |          | )         |  |

| Analysis Table |       |   |    |    |    |    |    |   |
|----------------|-------|---|----|----|----|----|----|---|
| Column No.     | 8     | 9 | 10 | 11 | 12 | 13 | 14 | 1 |
|                | 1 No. |   |    |    | 1  |    | 1  |   |
| 11             |       |   |    |    | 1  | 1  |    |   |
| III            |       |   |    |    |    | 1  | 1  |   |
| IV             |       | - |    | 1  | 1  | 1  |    |   |
| V              |       |   |    |    | 1  | 1  | 1  |   |
| VI             |       |   | 1  | 1  | 1  |    |    |   |
| Total          |       |   | 1  | 2  | 5  | 4  | 3  |   |

The size 12 is occurring maximum number of times (5 times). So, Mode = 12.

Ans. Mode = 12

Measures of Central Tendency — Median and Mode

# continuous Series

continuous series, mode lies in a particular class or group, which is called the *modal class*. n continuous n continuous fre following two methods are used in determining mode:

- The touch or Inspection Method or Inspection Method
- (i) Grouping Method.

### Observation Method

Observe are regular, homogeneous and there is a single maximum frequency, then we can use the observation method to determine Mode.

### Steps of Observation Method

Step 1. Determine the modal class, i.e. class with the highest frequency; Step 2. Determine the exact value of mode by the following formula:

$$Mo = I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$

Where,

Mo = Mode

l<sub>1</sub> = Lower limit of modal class

 $f_1$  = Frequency of the modal class

 $\mathbf{f}_0$  = Frequency of class preceding the modal class

 $f_2$  = Frequency of class succeeding the modal class

i = Class-interval of the modal class

The formula for calculation of Mode can also be expressed as:

$$NO = I_1 + \frac{f_1 - f_0}{(f_1 - f_0) - (f_1 - f_2)} \times i$$



9.37

Statistics for Class XI

### Example 35. Find out mode of the following series.

| Class-Interval | 0-5 | 5-10 | 10–15 | 15-20   |
|----------------|-----|------|-------|---------|
| Frequency      | 2   | 4    | 15    | 6 20-25 |
|                |     |      |       | 7       |

#### Solution:

By inspection, it is clear that modal class is 10-15, because frequency of this class is maximum i.e. 15.

**Computation of Mode** 

| Class-Interval          | Frequency                     |
|-------------------------|-------------------------------|
| 05                      | 2                             |
| 5–10                    | 4 fo                          |
| (l <sub>1</sub> ) 10–15 | 15 f <sub>1</sub> Modal Class |
| 15-20                   | 6 fa                          |
| 20-25                   | 7                             |

To calculate mode, the following formula will be used

Mode (Z) = 
$$i_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$

 $l_1 = 10, f_1 = 15, f_0 = 4, f_2 = 6, i = 5$ 

$$Z = 10 + \frac{15 - 4}{2 \times 15 - 4 - 6} \times 5 = 10 + \frac{11}{20} \times 5 = 12.75$$

### Ans. Mode = 12.75

### Grouping Method

As discussed before, Inspection Method is of use only when there is regularity and homogeneity in the series. In case of any irregularity, Grouping Method is preferred.

Steps of Grouping Method

The determination of mode by grouping method involves two steps:

Step 1. Determine the Modal Class by the process of grouping. The grouping procedure is same as done under discrete series.

Step 2. Determine the exact value of mode by the following formula:

$$Mo = I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_0} \times i$$

Let us understand the calculation of mode by Grouping Method (under continuous series) with the help of following example of following example.

Example 36. From the following data, determine

| Size      | 10-20 | 10-20 os sa |       |       |       |       |             |
|-----------|-------|-------------|-------|-------|-------|-------|-------------|
| Frequency | 4     | 20-30       | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 80-90 |
|           |       | 10          | 25    | 15    | 23    | 22    | 12          |

solution:

lu<sup>tion:</sup> By inspection, the modal class is not clear. Although 30 – 40 class has the highest frequency (25), yet greatest By inspection of items is around 50–60 class (with frequency of 23). Hence, we prepare a Grouping Table and Analysis Table.

### **Grouping Table**

| 0:00               | Frequency (f) | In Ti     | vo's       | In Three's |          |            |
|--------------------|---------------|-----------|------------|------------|----------|------------|
| Size<br>(X)        | Column I      | Column II | Column III | Column IV  | Column V | Caluma 1/1 |
|                    | 4             | 1         |            | 1          | CONTINUE | Column VI  |
| 10-20              | 10            | } 14      | } 35       | 39         | 1        |            |
| 20-30              | 25            | 1         | 500        | ]          | 50       |            |
| 30-40              | 15            | } 40      | 1          | 1          | 50       | 63         |
| 40-50              | 23            | 1         | 38         | 60         | ,        |            |
| 50-60              | 22            | 45        |            | )          | 57       | ĺ          |
| 60-70              | 12            | 1         | 34         |            | 57       | 37         |
| 70-80              |               | 15        | 3          |            | ,        | J          |
| 80 <del>-9</del> 0 | 3             | )         |            |            |          |            |





It is clear that modal class is 50-60 and frequency of this class is 23.

Using formula:

Mode (Z) = 
$$I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$
  
 $I_1 = 50, f_1 = 23, f_0 = 15, f_2 = 22, i = 10$   
 $Z = 50 + \frac{23 - 15}{2 \times 23 - 15 - 22} \times 10 = 50 + \frac{3}{9} \times 10 = 58.89$   
Ans. Let

Ans. Mode = 58.89

9.39

AND I

- 76

# Negsures of Central Tendency — Median and Mode

### 9.14 MODE IN SPECIAL CASES

9.14 MODE IN SPECIAL COLOR THE CALCulation process of Mode is different under some special circumstances. Let us discuss



### Cumulative Series ('Less than' or 'More than')

When cumulative frequency distribution ('Less than' or 'More than' type) is given, then the cumulative frequency distribution has to be converted into a simple frequency distribution. The calculation of mode in cumulative series will be clear from Example 37 ('less than' series) and Example 38 ('more than' series).

Example 37. Find out the mode in the following series:

| Size (below) | 5 | 10 |    |    |    |    |    |  |
|--------------|---|----|----|----|----|----|----|--|
| Frequency    | 5 | 10 | 15 | 20 | 25 | 30 | 35 |  |
|              | 1 | 3  | 13 | 17 | 27 | 36 | 38 |  |
| <b>0</b> 1   |   |    |    |    |    |    |    |  |

#### Solution:

Here, we are given the data in the form of less than cumulative frequency distribution. To compute mode, we shall first arrange the data is the form of the state of the data is the form of the state o we shall first arrange the data in the form of frequency distribution with continuous classes.

| Calculation of Frequency Table |           |                                                                                                                 |  |  |
|--------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Size                           |           | and the second states a |  |  |
| 0-5                            | Frequency | c.f.                                                                                                            |  |  |
| 5-10                           | 1         | 1                                                                                                               |  |  |
| 10-15                          | 2         | 3                                                                                                               |  |  |
| 15-20                          | 10        | 13                                                                                                              |  |  |
|                                | 4         | 17                                                                                                              |  |  |
| 20-25                          | 10        | 27                                                                                                              |  |  |
| 25-30                          |           | -                                                                                                               |  |  |
| 30-35                          | 9         | 36                                                                                                              |  |  |
| n the given series it.         | 2         | 38                                                                                                              |  |  |

In the given series, the distribution is irregular. Also the maximum frequency (10) is repeated. Therefore, <sup>#</sup> will find mode by the method of grouping will find mode by the method of grouping.

| /             | Frequency (f) | In Ti     | vo's       |           | A local sectors |           |
|---------------|---------------|-----------|------------|-----------|-----------------|-----------|
| SIZE          | Column I      | Column II | Column III | Column IV | In Three's      |           |
| (X)           | 1             |           |            |           | Column V        | Column VI |
| 0-5           | 2             | } 3       | 12         | 13        | ,               |           |
| 5-10<br>10-15 | 10            | } 14      | <u>}</u>   | ) 10      | 16              | 1         |
| 15-20         | 4             | J         | } 14       | )         |                 | 24        |
| 20-25         | 10            | } 19      | J          | 23        |                 | 24        |
| 25-30         | 9             | 1         | } 11       | 1         | 21              |           |
| 30-35         | 2             |           | J          |           | J               |           |

Grouping Table

9.41

AND

#### **Analysis Table**

| Column No. | 0–5 | 5–10 | 10-15 | 15-20  | 20-25 | 25-30 | 30-35 |
|------------|-----|------|-------|--------|-------|-------|-------|
|            |     |      | 1     | н.<br> | 1     |       |       |
| I          |     |      |       |        | 1     | 1     |       |
|            |     |      |       | 1      | 1     |       |       |
| IV         |     |      |       | 1      | 1     | 1     |       |
| V          |     |      |       |        | 1     | 1     | 1     |
|            |     |      | 1     | 1      | 1     |       |       |
| Total      |     |      | 2     | 3      | 6     | 3     | 1     |

Since the class 20-25 is repeated maximum number (6) of times, it is the modal class.

So, applying the formula:

Mode (Z) = 
$$l_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$
  
 $l_1 = 20, f_1 = 10, f_0 = 4, f_2 = 9, i = 5$ 

$$Z = 20 + \frac{10 - 4}{2 \times 10 - 4 - 9} \times 5 = 20 + \frac{6}{7} \times 5 = 24.28$$

Ans. Mode = 24.28

| Example 38. Calculate mode                                                             | from the following particulars:                                                                        | 400 500                       |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|
| Daily Wages in ₹ (More than)                                                           | 100 <u>200</u><br>48 36                                                                                | 17 6                          |
| Solution                                                                               | 53                                                                                                     | istribution. To compute mode, |
| <sup>Here,</sup> we are given the data i<br><sup>We shall</sup> first arrange the data | n the form of more than cumulative frequency di<br>a in the form of frequency distribution with contin | NUOUS Classes.                |

Nedian and Mode 9. In the given series, the distribution is irregular. Therefore, we will find mode by the method of grouping.

|                         | anov (f)                  | In T         | wo's       |           |            |           |
|-------------------------|---------------------------|--------------|------------|-----------|------------|-----------|
| 1000                    | Frequency (1)             | Column II    | Column III |           | In Three's |           |
| Size                    | Frequency (f)<br>Column I | Column       | Column III | Column IV | Column V   | Column VI |
| ()                      | 15                        | 35           |            | 1         |            |           |
| 0-10                    | 20                        | S            | 45         | 60        | 1          |           |
| 10-20                   | 25                        | } 49         | 3          | 1         | 69         | 1         |
| 20-30<br>30-40<br>40-50 | 24                        | S            | } 36       | 1         | 1          | 61        |
| 30-40                   | 12                        | } 43         | 5          | 67        | 1          | ]         |
| 40-50                   | 31                        | 1            | 102        | )         | 114        | 154       |
| 50-60<br>60-70          | 71                        | <b>}</b> 123 | J 102      |           | 3          | 154       |
| 70-80                   | 52                        | 5            |            |           |            | )         |

#### **Analysis Table**



Since the class 60-70 is repeated maximum number of times, it is the modal class.

So, applying the formula:

Mode (Z) = 
$$l_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$
  
 $l_1 = 60, f_1 = 71, f_0 = 31, f_2 = 52, i = 10$ 

$$Z = 60 + \frac{71 - 31}{2 \times 71 - 31 - 52} \times 10 = 60 + \frac{40}{59} \times 10 = 66.78$$

Ans. Mode = 66.78 marks

<sup>Inclusive</sup> Class-Intervals The frequency distribution must be continuous with exclusive type classes, without any gaps. In case data is not in the form of continuous classes, it must be converted into continuous classes have classes before applying the formula. Therefore, in case of inclusive class-intervals, the formula. <sup>remains</sup> the same, but the class-intervals are converted into an exclusive class-interval series.

Statistics for Class XI

| Calculation of t          | Frequency                        |
|---------------------------|----------------------------------|
| Daily Wage 🕅              | 5                                |
| 100-200                   | 12 f <sub>0</sub>                |
| 200-300                   | 19 (f <sub>1</sub> ) Modal Class |
| (l <sub>1</sub> ) 300–400 | 11 f <sub>2</sub>                |
| 400-500                   | 6                                |
| 500-600                   |                                  |

By inspection, it is clear that modal class is 300-400, because frequency of this class is maximum i.e. 19 To calculate mode, the following formula will be used

Mode (Z) = 
$$l_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$

 $I_1 = 300, f_1 = 19, f_0 = 12, f_2 = 11, i = 100$ 

$$Z = 300 + \frac{19 - 12}{2 \times 19 - 12 - 11} \times 100 = 300 + \frac{7}{15} \times 100 = 346.67$$

Ans. Mode = ₹ 346.67

### Mid-Values are given

In this case, we have to first convert the mid-values in to class-interval to calculate the value of mode.

Example 39. Calculate the mode from the following data:

| Marks (Mid-values) | 5  | 15 | 25 | 35 | 45 | 55 | 65 | 75 |
|--------------------|----|----|----|----|----|----|----|----|
| No. of Students    | 15 | 20 | 25 | 24 | 12 | 31 | 71 | 52 |

Solution:

. .

24

In the given example, we are given the mid-values. We need to first convert it into continuous series. Step 1: The difference between the two mid-values is 10.

Step 2: Half of the difference is:  $\frac{10}{2}$  = 5. Now, 5 is reduced and added to each mid-value to determine the

lower limit and upper limit. It is shown in the following table:

### **Calculation of Class-Intervals**

| Marks (X) | No. of Students (f) |
|-----------|---------------------|
| 0–10      | 15                  |
| 10–20     | 20                  |
| 20–30     | 25                  |
| 30-40     | 23                  |
| 40-50     | 5711-58             |
| 50-60     | 12                  |
| 60–70     | 31                  |
| 70–80     | 71                  |
|           | 52                  |

9.42

AND I

### Example 40. Calculate mode in the following distribution.

| Marks           | 40-49 | 50-59 | 60-69 | 70–79 | 80-89    |
|-----------------|-------|-------|-------|-------|----------|
| No. of Students | 12    | 30    | 24    | 20    | 12 90-99 |
|                 |       |       |       |       |          |

#### Solution:

ution: In the given example, inclusive class-intervals will be first converted to exclusive class-intervals and, thereather

#### **Calculation of Exclusive Class-Intervals**

| No. of Students |  |
|-----------------|--|
| 12              |  |
| 30              |  |
| 24              |  |
| 20              |  |
| 12              |  |
|                 |  |
|                 |  |

By inspection, the modal class is not clear. Although 49.5-59.5 class has the highest frequency of 30, yet greatest concentration of items is around 59.5-69.5 class (with frequency of 24). Therefore, we will find mode by the method of grouping.

#### **Grouping Table**

| Size<br>(X)            | No. of<br>Students (f) | In Two's  |            | In Three's |           |           |  |
|------------------------|------------------------|-----------|------------|------------|-----------|-----------|--|
|                        | Column I               | Column II | Column III | Column IV  | Column V  | Column VI |  |
| 39.5-49.5              | 12                     | 1         |            | 1          | Columnity | Columna   |  |
| 49.5-59.5              | 30                     | } 42      | 1          | 66         |           |           |  |
| 59.5-69.5              | 24                     | 1         | } 54       | 00         |           | -         |  |
| 69.5-79.5              | 20                     | 44        | ,          | ,          | 74        |           |  |
| 79.5-89.5              | 12                     | 1         | 32         |            | J         | 56        |  |
| 89.5 <del>-9</del> 9.5 | 2                      | 14        | ,          | 34         |           | J         |  |

| Contract on the second s | An             | alysis Table        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39.5-49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49.5-59.5      |                     | 69 5-70 5                                              | 70 5 90 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89.5-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              |                     | 09.0-79.5                                              | 79.5-89.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 1                   | 1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              | 1                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1              | 1                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              |                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 1                   | 1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 1                   | 1                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4              | 5                   | 2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39.5-49.5<br>✓ | 39.5-49.5 49.5-59.5 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 39.5-49.5     49.5-59.5     59.5-69.5     69.5-79.5       Image: Imag | 39.5-49.5       49.5-59.5       59.5-69.5       69.5-79.5       79.5-89.5         Image: Im |

# Wegsures of Central Tendency — Median and Mode

From the analysis table, the modal group is 59.5–69.5. The frequency of this group is 24. By applying the

 $Mode(Z) = I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$ 

formula:

Statistics for Class XI

But in the given example,  $f_1$  (24) is less than  $f_0$  (30). It means,  $(f_1 - f_0)$  will be negative. In such cases, mode is calculated by the following formula:

Mode (Z) = 
$$I_1 + \frac{|f_1 - f_0|}{|f_1 - f_0| + |f_1 - f_2|} \times I$$

$$= 59.5, f_1 = 24, f_0 = 30, f_2 = 20, i = 10$$

$$Z = 59.5 + \frac{\begin{vmatrix} 24 - 30 \end{vmatrix}}{\begin{vmatrix} 24 - 30 \end{vmatrix} + \begin{vmatrix} 24 - 20 \end{vmatrix}} \times 10 = 59.5 + \frac{6}{10} \times 10 = 65.5$$

Ans. Mode = 65.5 Marks

### **Open-End Series**

In case of open-end classes, the lower limit of the first class and upper limit of the last class is not given. To calculate Mode, there is no need to complete the class-interval.

Example 41 would illustrate the point.

### Example 41. Calculate the value of mode from the following particulars.

| 14.18               |               |
|---------------------|---------------|
| Class-Intervals (X) | Frequency (f) |
| Below 20            | 4             |
| 20–30               | 6             |
|                     | 5             |
| 30–40               | 10            |
| 40–50               | 20            |
| 50-60               | 22            |
| 60–70               | 24            |
| 70-80               | 6             |
| 80–90               | 2             |
| 90–100              | 1             |
| Above 100           |               |

Solution:

The given data consist of open-end classes. However, to calculate mode, there is no need to complete the class-intence! By Inspection, the modal class is not clear. Although 70–80 class has the highest frequency (24), yet greatest <sup>Conc</sup>entration class-interval. Concentration of items is around 60–70 class (with frequency of 22). Hence, we prepare a Grouping Table and Analysis Table <sup>and</sup> Analysis Table.

**Grouping Table** 

| Class-Interval | Frequency (f) | In T      | iwo's      |           |          |           |
|----------------|---------------|-----------|------------|-----------|----------|-----------|
| (20)           | Column I      | Column II | Column III | Column IV | Column V | Colu      |
| Below 20       | 4             | } 10      |            | )         |          | Column VI |
| 20-30          | 6             | ۱۰<br>۱۰  | 11         | 15        | 1        |           |
| 30-40          | 5             | } 15      | \$         | J         | 21       |           |
| 40-50          | 10            | ۱۵<br>۱۵  | ر 30       | 1         | J        |           |
| 50-60          | 20            | 42        | } 50       | 52        | 1        | 35        |
| 60-70          | 22            | } 42      | ]          | J         | 66       |           |
| 70-80          | 24            | 1 00      | } 46       | 1         | J        |           |
| 80-90          | 6             | } 30      | 1          | 32        | 1        | 52        |
| 90-100         | 2             | 1         | } 8        | J         | 9        |           |
| Above 100      | 1             | } 3       |            |           | J        |           |

### Analysis Table

| Below 20 | 20-30    | 30-40          | 40-50                | 50-60                                        | 60-70                                                            | 70-80 | 80-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Above 100                                                                                                                 |
|----------|----------|----------------|----------------------|----------------------------------------------|------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|          |          |                |                      |                                              |                                                                  | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |
| -        |          |                |                      | 1                                            | 1                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |
|          |          |                |                      |                                              | 1                                                                | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |
|          |          |                | 1                    | 1                                            | 1                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |
|          |          |                |                      | 1                                            | 1                                                                | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |
|          |          |                |                      |                                              | 1                                                                |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |
| -        | _        | _              | 1                    | •                                            | -                                                                | •     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |
|          | Below 20 | Below 20 20–30 | Below 20 20–30 30–40 | Below 20       20–30       30–40       40–50 | Below 20         20–30         30–40         40–50         50–60 |       | Image: state | Image: | Below 20         20-30         30-40         40-50         50-60         60-70         70-80         80-90         90-100 |

It is clear that modal class is 60-70 and frequency of this class is 22.

Using formula:

Mode (Z) = 
$$I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$
  
 $I_1 = 60, f_1 = 22, f_0 = 20, f_2 = 24, i = 10$ 

$$Z = 60 + \frac{22 - 20}{2 \times 22 - 20 - 24} \times 10$$

However, the value of  $(2f_1 - f_0 - f_2)$  is zero. In such cases, mode is calculated by the following formula:

Mode (Z) = 
$$I_1 + \frac{|f_1 - f_0|}{|f_1 - f_0| + |f_1 - f_2|} \times i$$

Neasures of Central Tendency — Median and Mode

$$\frac{|22-20|}{|22-20|+|22-24|} \times 10 = 60 + \frac{2}{4} \times 10 = 65$$

Ans. Mode = 65

Statistics for Class XI

### Unequal Class-Intervals

Mode can be calculated only if the class-intervals are of equal magnitude. If unequal class-intervals are More than we must make them equal before we calculate mode. The class-intervals should be gven, and frequencies be adjusted. It is assumed that frequencies are equally distributed.

The following example will illustrate the point.

Example 42. Find the mode from the following data:

| Class-interval | 0–10 | 10-20 | 20-40 | 40-50 | 50-70 | 70-80 |
|----------------|------|-------|-------|-------|-------|-------|
| Frequency      | 10   | 14    | 40    | 35    | 42    | 10    |

Solution:

In the given example, the class-intervals are not equal. To calculate mode, the class-intervals are made equal and frequencies are adjusted. We take the assumption that in this case, frequencies are equally distributed.

| Calculation of Frequency Table |                                                          |  |  |  |  |  |
|--------------------------------|----------------------------------------------------------|--|--|--|--|--|
| Class-Interval                 | Frequency                                                |  |  |  |  |  |
|                                | 10                                                       |  |  |  |  |  |
| 0–10                           | 14                                                       |  |  |  |  |  |
| 10–20                          | 20                                                       |  |  |  |  |  |
| 20–30                          |                                                          |  |  |  |  |  |
| 30-40                          | 20 (f <sub>0</sub> )<br>35 (f <sub>1</sub> ) Modal Class |  |  |  |  |  |
| (l <sub>1</sub> ) 40–50        | 21 (f <sub>2</sub> )                                     |  |  |  |  |  |
| 50-60                          | 21                                                       |  |  |  |  |  |
| 60–70                          | 10                                                       |  |  |  |  |  |
| 70–80                          | tubic class is maximum i.e. 35.                          |  |  |  |  |  |
|                                |                                                          |  |  |  |  |  |

By inspection, it is clear that modal class is 40-50 as frequency of this class is 1 To calculate mode, the following formula will be used:

$$Mod_{\theta}(Z) = I_{1} + \frac{f_{1} - f_{0}}{2f_{1} - f_{0} - f_{2}} \times i$$

$$1^{=40}, f_1 = 35, f_0 = 20, f_2 = 21, i = 10$$

$$\chi = 40 + \frac{35 - 20}{2 \times 35 - 20 - 21} \times 10 = 40 + \frac{15}{29} \times 10 = 45.17$$
  
Ans. Mode = 45.17

9.46

9.47

1

S

Solution:

#### SUMMARY OF MODE IN SPECIAL CASES ACE 2. Mid Va

**CASE 1: Cumulative Frequency Distribution** (Less Than Series): Convert it into Simple Frequency Distribution and then calculate Mode in usual manner

| Marks    | Less<br>than 10 | Less<br>than 20 | Less<br>than 30 | Less<br>than 40 | Less<br>than 50 |  |  |  |
|----------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--|
| Students | 2               | 6               | 21              | 27              | 34              |  |  |  |
| N        | larks (X)       |                 | S               | tudents (f      | )               |  |  |  |
|          | 0-10            |                 |                 | 2               |                 |  |  |  |
|          | 0-20            |                 | 4               |                 |                 |  |  |  |
| 2        | 20 - 30         |                 |                 | 15              |                 |  |  |  |
| 3        | 30 - 40         |                 |                 | 6               |                 |  |  |  |
| 40 - 50  |                 |                 | 7               |                 |                 |  |  |  |

By inspection, it is clear that modal class is 20-30.

$$Z = I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_0} \times i = 20 + \frac{15 - 4}{2 \times 15 - 4 - 6} \times 10 = 12.75$$

CASE 3: Inclusive Class-Intervals (Classes of type 10-19, 20-29 are given): Convert Inclusive Class-Intervals into Exclusive Series

| Close Internals                 | 10 10        |        |          |          |               |         |  |  |
|---------------------------------|--------------|--------|----------|----------|---------------|---------|--|--|
| Class-Intervals                 | 10-19        | 20 - 2 | 29       | 30 - 39  | 40 - 49       | 50 - 59 |  |  |
| Frequency                       | 9            | 10     |          | 22       | 40            | 18      |  |  |
| Class-Inter                     |              | Freq   | uency (f |          |               |         |  |  |
| 9.5 - 1<br>19.5 - 2<br>29.5 - 3 | 29.5<br>39.5 |        |          |          | 9<br>10<br>22 |         |  |  |
| 39.5 - 49.5<br>49.5 - 59.5      |              |        |          | 40<br>18 |               |         |  |  |

By inspection, it is clear that modal class is 39.5-49.5 as frequency of this class is maximum, i.e. 40,

$$\mathbf{f_1 = 39.5} \quad \mathbf{f_1 = 40} \quad \mathbf{f_0 = 22} \quad \mathbf{f_2 = 18} \quad i = 10$$
$$= \mathbf{I_1} + \frac{\mathbf{f_1 - f_0}}{2\mathbf{f_1 - f_0 - f_2}} \times i = 39.5 + \frac{40 - 22}{2 \times 40 - 22 - 18} \times 10^{-10}$$

CASE 5a: Unequal Class-Intervals (When Class-Inervals are Merged together): Before calculating mode, ss-intervals are made equal and frequencies are adjusted. 0-5 5 - 1010-15 15-20 20-30 30-40

lass-interval of 10-20 with frequency of 12 (= 7 + 5) Class-Intervals (X)

|                                                                | Frequency (f)                      | 1 August 1 and 1 |
|----------------------------------------------------------------|------------------------------------|------------------|
| 0-10                                                           | 10,00                              |                  |
| 10 - 20                                                        | 10                                 |                  |
| 20 - 30                                                        | 12                                 |                  |
| 30 - 40                                                        | 30                                 |                  |
|                                                                | 8                                  |                  |
| y inspection, it is clear that more                            | dal class is 20, 20                | 1                |
| $f_1 = 20$ $f_1 = 30$ $f_0 = 1$                                |                                    |                  |
|                                                                | $ I_2 = 8 I = 10 $                 | By inspec        |
| $= I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i = 20 + -$ | 00                                 | 1000             |
| $2f_1 - f_2 - f_3 - f_4 = 20 + -$                              | <u>30-12</u> × 10 04 5             | 1                |
| -1 10 12                                                       | $2 \times 30 - 12 - 8$ $10 = 24.5$ |                  |
|                                                                |                                    | 7-1              |

| CASE 2: M<br>are given, the<br>Intervals and t<br>Mid-Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | id-Valu          | t such         | mid-values                | When         | Mid         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|---------------------------|--------------|-------------|
| are given, their<br>Intervals and t<br>Mid-Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hen calc         | ulate M        | ledian in us              | ual man      | ular Clas   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                | 10             | 25                        |              |             |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                | 20             | 40                        | 35           | 45          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                |                           | 10           | 18          |
| Class-Int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ervals (X        | ()             | Fre                       | CHIL         | -           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10               |                | 116                       | quency (     | f)          |
| 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                |                           | 8<br>20      |             |
| 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                |                           | 40           |             |
| 30 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                |                           | 10           |             |
| 40 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                |                           | 10           |             |
| By inspection, i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t is clear       | that m         | odal class i              | - 00         |             |
| 11 = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $f_1 = 40$       | $f_0 = $       | 20 $f_2 = 10$             | ) = 10       | 1           |
| $Z = I_1 + \frac{f_1}{2f_1 - f_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-f_0$           |                | 40                        | 00           |             |
| $2 = 1_1 + \frac{1}{2f_1} - \frac{1}{2$ | $f_0 - f_2$      | (1 = 20)       | $+\frac{40-}{2\times 40}$ | 20<br>20 x   | 10=24       |
| ASE 4. On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on-End           | Coni           | and the second second     | 217 dt       | 1000        |
| and upper limit<br>ind missing limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of last cl       | ass no         | t given b Th              | limit of fil | rst class   |
| ind missing limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ts, i.e. ca      | Iculate        | Mode in un                | ere is no    | need to     |
| Class-Intervals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Less             | 40 - 5         |                           | sual man     | ner.        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | than 40          | 40 - J         | 0 50 - 60                 |              |             |
| requency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                | 14             | 24                        | 9            | han 70<br>5 |
| Class Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                |                           | -            | 0           |
| Class-Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 2              | Frequ                     | iency (f)    |             |
| Less th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                |                           | 3            | Southers.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) - 50<br>) - 60 |                |                           | 14           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) – 70           |                | 2                         | 24<br>9      |             |
| More that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                |                           | 5            |             |
| y inspection, it i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                |                           | -            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                | $f_2 = 9$                 |              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                |                           |              |             |
| $Z = I_1 + \frac{f_1 - f_0}{2f_1 - f_0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | xi=              | = 50 +         | 24 - 14                   | × 10         | = 54        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~                |                |                           |              | 11/1 40     |
| ASE 5b:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unequa           | al C           | ass-Inter                 | vals (       | When node.  |
| ass-Intervals a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | re Split-        | -up): 1        | Before calc               | ulating in   | isted.      |
| ass-intervals are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | madeed           | gual an        | d frequencie              | 50 -         | 70          |
| X 10-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 20            | ) - 40         | 40 - 50                   | 12           |             |
| 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 32             | 36                        |              |             |
| make the class-i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ntervals e       | equal, 2       | 0-40 is split u           | paszoro      | 70 is       |
| make the class-i<br>40 with frequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cy of 16         | (= 32 ÷        | 2) each. Sir              | 12 ± 2)0     | ach.        |
| r up as 50-60 ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ia 60-70 i       | with free      | juency of o (             |              |             |
| Class-Interva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | als (X)          |                | Frequer                   | ncy (I)      |             |
| 10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                |                | 9                         |              |             |
| 20 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                | 16<br>16                  |              |             |
| 30 - 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                | 36                        |              |             |
| 40 - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                | 6                         |              |             |
| 50 - 60<br>60 - 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                | 6                         |              | -           |
| nenection it i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cloar that       | model          | class is 40-              | 50.          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                |                           |              |             |
| $I_1 = 40  f_1$<br>= $I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Constant State | 36 - 16                   | × 10=4       |             |
| $1_1 + 21_1 - 1_2 - 1_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×i=*             | 10+2           | × 36 - 16 -               | 9            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                |                |                           |              | 1.1.1       |

Measures of Central Tendency — Median and Mode

# 9.15 MODE BY GRAPHICAL METHOD

9.15 Mole can be located graphically with the help of histogram.

# steps to Determine Mode by Graphical Method

step 1. Draw a histogram of the given data.

 $\frac{1}{100}$  Step 2. The rectangle with the greatest height will be the modal class.

Step 3. Draw a line joining the top right point of the rectangle of the modal class with the top right point of the rectangle of the class preceding the modal class.

step 4. Similarly, draw a line joining the top left point of the rectangle of the modal class with the top left point of the rectangle of the class succeeding the modal class.

step 5. From the point of intersection of two diagonal lines, draw a perpendicular on the X-axis. Step 6. The point at which the perpendicular touches the X-axis gives the modal value. The Graphical Method will be clear from the following example:

Example 43. Find out the mode of the following series, using the Graphic Method.

| Marks           | 0–10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
|-----------------|------|-------|-------|-------|-------|-------|
| No. of Students | 5    | 10    | 25    | 15    | 10    | 5     |



$$Mode (Z) = I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$

$$Mode (Z) = I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$

$$Mode = 25, f_0 = 10, f_2 = 15, i = 10$$

$$Z = 20 + \frac{25 - 10}{2 \times 25 - 10 - 15} \times 10 = 20 + \frac{150}{25} = 26$$

$$Mode = 26 \text{ Marks}$$

Median and Mode

### 9.16 RELATIONSHIP BETWEEN MEAN, MEDIAN AND MODE

9.16 RELATIONSHIP DE TREE and mode depends upon the nature of distribution which may be either symmetrical or asymmetrical.

which may be entire synthetical distribution, the values of mean, median X. Symmetrical Distribution: In case of symmetrical distribution, the values of mean, median X = Median (Me) = Median and mode are equal, i.e. for symmetrical curves, Mean (X) = Median (Me) = Mode(Z). The following  $f_{median}$ symmetrical distribution gives the shape of bell as seen in following figure:



Symmetrical Distribution



Asymmetrical Distribution: In actual life, most of the distributions are not symmetrical In an asymmetrical series, mean, median and mode have different values. The frequency curve is not bell shaped, i.e. height of the curve is not in the middle. An asymmetrical (skewed) distribution is either positively skewed or negatively skewed.

- For a positively skewed distribution, most of the values of observations in a distribution fall to the right of mode. The order of magnitude of these measures will be: *Mean > Median > Mode*
- For a negatively skewed distribution, values of lower magnitude are concentrated more to the left of the mode. The order of magnitude of these measures will be: Mean < Median < Mode.





9.51

Asymmetrical Distribution (Negatively Skewed)

### Relationship between Mean, Median and Mode in an Asymmetrical Distribution

According to Karl Pearson, the relationship between mean, median and mode in an asymmetrical distribution is given by:

#### Mode = 3 Median - 2 Mean

- 1. This formula is specially useful to determine the value of mode, when it is ill-defined.
- 2. If we know any two of the three values (mean, median and mode), the third can be estimated by using the given formula. The value so computed will be more or less same as obtained by using exact formula, provided distribution is moderately asymmetrical.

(Refer Examples 44, 45, 46, 47 and 48)

Example 44. If the mean and median of moderately asymmetrical series are 26.8 and 27.9 respectively. Calculate the value of mode.

Mode =

Solution:

attistics for Clas

```
Using the empirical relationship, we know:
```

```
Mode = 3 Median - 2 Mean = (3 \times 27.9) - (2 \times 26.8) = 83.7 - 53.6 = 30.1
Ans. Mode = 30.1
```

Example 45. If mean of a series is 30 and mode is 25. Find Median.

### Solution:

Using the empirical relationship, we know: Mode = 3 Median - 2 Mean <sup>25</sup> = 3 Median – (2 × 30) <sup>3</sup> Median = 25 + 60

```
Median = \frac{85}{3} = 28.33
Ana. Median = 28.33
```

Masures of Central Tendency — Median and Mode <sup>4</sup> Indeterminate: The value of mode may not always be determined. It is difficult to locate Indetermined. Indetermined in the case of bi-modal and multi-modal distributions.

Affected by the fluctuations of sampling: As compared to mean, mode is affected to a great extent, by sampling fluctuations.



## 118 COMPARISON BETWEEN MEAN, MEDIAN AND MODE

We have discussed the concepts of mean, median and mode in detail. However, the choice of which method to use, for a given set of data, depends upon number of considerations (Discussed <sup>in Chapter 8</sup>, Section 8.4), which can be classified into the following broad heads:

<sup>1</sup> Rigidly defined: Mean and median are rigidly defined, whereas mode is not rigidly defined in all the situations.

<sup>2</sup> Based on all observations: An appropriate average should be based on all the observations. This characteristic is met only by mean and not by median or mode.

<sup>3. Possess sampling stability:</sup> The preference should be given to mean when the requirement <sup>of least</sup> sampling variations is to be fulfilled.

4 Further algebraic treatment: It should be capable of further mathematical treatment. This characteristic is satisfied only by mean and, consequently, most of the statistical theories Use mean as a measure of central tendency.

<sup>5</sup>, Easy to understand and calculate: An average should be easy to understand and easy to interinterpret. This characteristic is satisfied by all the three averages.

<sup>6</sup> Not affected by extreme values: It should not be unduly affected by the extreme observations. The mode is most suitable average from this point of view. Median is only slightly affected while a suitable average from this point of extreme observations. While mean is very much affected by the presence of extreme observations.

Conclusion: Generally, arithmetic mean is regarded as the best measure of central tendency and is most Widely Used in a <sup>widely</sup> used in practice. However, in some specific cases, mode or median are also used, depending <sup>upon the nature</sup> of available data.

### 9.19 CALCULATION OF MEAN, MEDIAN AND MODE IN SPECIAL CASES

9.19 CALCULATION OF MEAN, MEDICAL CALCULATION OF MEAN, MEDICAL CALCULATION OF MEAN, Median and Mode is different under some circumstances. Let us have a quick recap of treatment of special cases:

| Cases                                                   | MEAN                                                                                                                                              | MEDIAN                                                                                                                                                                                       | MODE                                                                                                                     | Example |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------|
| Cumulative<br>Series<br>('Less than' or<br>'More than') | Convert the cumulative<br>frequency into a simple<br>frequency distribution<br>and then calculate mean<br>in the usual manner.                    | Convert the cumulative<br>frequency into a simple<br>frequency distribution<br>in order to find out the<br>frequency of median<br>class and then calculate<br>median in the usual<br>manner. | frequency into a simple                                                                                                  | 49, 50  |
| Mid-Values are<br>given                                 | Calculate mean in usual<br>manner. Do not convert<br>mid-values into class-<br>intervals.                                                         | Convert the mid-values<br>into Class-intervals and<br>then calculate median.                                                                                                                 | Convert the mid-values<br>into Class-intervals to<br>calculate mode.                                                     | 51      |
| Inclusive Class-<br>Intervals                           | Calculate mean in usual<br>manner. Do not convert<br>the series into an<br>exclusive class-interval<br>series.                                    | Class-intervals are con-<br>verted into an exclusive<br>class-interval series to<br>calculate median.                                                                                        | Class-intervals are con-<br>verted into an exclusive<br>class-interval series<br>and, thereafter, mode is<br>calculated. | 52      |
| Open-End Series                                         | To calculate mean,<br>missing class limits<br>are assumed, which<br>depends on the pattern<br>of class-intervals of<br>other classes.             | Median is calculated<br>in the usual manner<br>without completing the<br>class-intervals.                                                                                                    | Mode is calculated in the<br>usual manner without<br>completing the class-<br>intervals.                                 | 53      |
| Unequal Class-<br>Intervals                             | Mean can be determined<br>in the usual manner after<br>calculating the mid-<br>values of each interval.<br>Class-intervals are not<br>made equal. | In case of median also,<br>class-intervals are not<br>made equal and median<br>is calculated in the usual<br>manner.                                                                         | To calculate mode, it<br>is essential to make<br>class-intervals equal<br>and frequencies have to<br>be adjusted.        | 54      |

neures of Central Tendency — Median and Mode

| Measure                                                                                      | 95 01 0                                                |                                       | 1             |                      |                              |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                            |                   |                       |       | 9.57          |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------|---------------|----------------------|------------------------------|----------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|----------------------------|-------------------|-----------------------|-------|---------------|
|                                                                                              | MAR                                                    | OF                                    | ME            | AN,                  |                              | AN       | AND                      | MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1111                              |                                         |                            |                   |                       |       | 3.37          |
| SUM                                                                                          | umulat                                                 | ive F                                 | requ          | ency                 | Distribu                     | tion     | 1 - 1 - 1 - 1 - 1        | MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN SP                             | ECI/                                    | AL C                       | AS                | ES                    |       |               |
|                                                                                              |                                                        | (Les                                  | s Tha<br>Mean | Medi                 | an and Moo                   |          | A garage                 | elasta and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -inula(I                          | ve Fre                                  | que                        | ncy D             | Distribu              | tio   | T MARKET      |
| evample                                                                                      | e 49. Cal                                              | culate                                | viean,        | INCOM                |                              | le:      |                          | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50. Calc                          | (More                                   | Than                       | Series            | 3)                    |       |               |
| inY                                                                                          | ears                                                   | 10                                    | 20            | 30                   | 40                           | 50       | 60                       | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | ean, M                                  | Series)<br>Median and Mode |                   |                       | £:    |               |
| Less th                                                                                      | Age (Less than)<br>(Less than)<br>No. of Persons 15 32 |                                       | 32            | 51                   | 78                           | 97       | 110                      | (More th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ian)                              | 0                                       | 10                         | 20                | 30                    | 40    | 50            |
| at Pl                                                                                        | 30110                                                  | 11 :010                               | - Erea        | No. of S             |                              | 90       | 87                       | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                | 30                                      | 12                         |                   |                       |       |               |
| MEAN:                                                                                        | Convert                                                |                                       |               |                      | uency Dist<br>r.             |          | ion and                  | MEAN:<br>then calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Convert i<br>culate Mea           | t into S                                | mple                       | Freque            | ency Dis              | tribu | tion and      |
| Age in                                                                                       | No. Of                                                 | IVIIU-                                |               | m – A<br>– 25)       | $d' = \frac{m - A}{C}$       |          | fd′                      | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No. of                            | Mid-                                    |                            |                   | film and the          |       | fd'           |
| years                                                                                        | Persons                                                | value<br>(m)                          | (~            | - 23)                | (C = 10)                     |          |                          | (X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Students                          | value                                   | (A :                       | = 25)             | $d' = \frac{m}{C}$    | A     | fd'           |
| (X)                                                                                          | (f)<br>15                                              | 5                                     |               | 20                   | -2                           |          | -30                      | 0-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (f)<br>3                          | (m)                                     | 1                          |                   | (C = 10               | )     |               |
| 0-10<br>10-20                                                                                | 17                                                     | 15                                    | -             | 10                   | -1                           |          | -17                      | 10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                 | 5<br>15                                 |                            | 20<br>10          | -2<br>-1              |       | 6<br>9        |
| 20-30                                                                                        | 19                                                     | 25                                    |               | 0                    | 0                            |          | 0                        | 20-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                | 25                                      |                            | 0                 | 0                     |       | -9            |
| 30 - 40                                                                                      | 27                                                     | 35                                    |               | 10<br>20             | 1                            |          | 27                       | 30 - 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                | 35                                      |                            | 10                | 1                     |       | 30            |
| 40 - 50                                                                                      | 19                                                     | 45<br>55                              |               | 20<br>30             | 2                            |          | 38<br>39                 | 40-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                | 45                                      |                            | 20                | 2                     |       | 36            |
| 50 - 60                                                                                      | 13<br>Σf = 110                                         |                                       | -             | 00                   | 3                            | Σfc      | 39<br>1´= 57             | 50 - 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12<br>Σf = 90                     | 55                                      |                            | 30                | 3                     | -     | 36            |
|                                                                                              |                                                        |                                       |               | _                    | _                            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21 = 90                           |                                         | _                          |                   |                       | 2     | fd' = 87      |
| Mean (X                                                                                      | ) = A + -                                              | $\frac{\Sigma 10}{\Sigma f} \times 0$ | 0 = 25        | $5 + \frac{5}{11}$   | <del>7</del><br>0 × 10 = 3   | 0.18     | years                    | Mean (X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bar{A} = A + \frac{\Sigma}{2}$  | $\frac{\text{fd}^2}{\Sigma f} \times C$ | = 25                       | + 87<br>90        | × 10 = 3              | 4.67  | 7 marks       |
|                                                                                              | N: Conv<br>calculate                                   |                                       |               |                      | Frequency<br>nanner.         | Dist     | ribution                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N: Conve<br>calculate             |                                         |                            | - COL             |                       | Dis   | tribution     |
| Age in                                                                                       | years ()                                               | () No.                                | of Per        | sons                 | (f) (                        | .f.      |                          | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | irks (X)                          | No. o                                   | fStud                      | ents (f           | )                     | c.f.  | See an        |
|                                                                                              | 0-10                                                   |                                       | 15            | 5                    |                              | 15       |                          | 0 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                         |                            |                   |                       | 3     |               |
|                                                                                              | 10-20 1                                                |                                       | 17            | 7                    | 32                           |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10-20                             |                                         |                            |                   | 12<br>30              |       |               |
|                                                                                              | 20-30 19                                               |                                       |               |                      |                              | 51<br>78 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 – 30<br>30 – 40                |                                         | 30                         |                   |                       |       | 60            |
|                                                                                              | 30 - 40 21                                             |                                       |               |                      | 97                           |          |                          | 40 - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | 18                                      |                            |                   |                       | 78    |               |
|                                                                                              | 40-50 19<br>50-60 13                                   |                                       |               |                      | 10                           |          |                          | 50-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | 12                                      |                            |                   |                       | 90    |               |
|                                                                                              | $N = \Sigma f = 110$                                   |                                       |               |                      |                              |          |                          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = Σf =                            | = 90                                    |                            |                   |                       |       |               |
| $Me = \frac{N}{2}$                                                                           |                                                        | 55 <sup>th</sup> ite                  | m; 5          | i5 <sup>th</sup> ite | m lies in gro<br>7 i = 10    | oup 3    | 30 – 40                  | $Me = \frac{N}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                 |                                         |                            |                   | lies in gro<br>i = 10 |       | 30 – 40       |
|                                                                                              | 30                                                     | C.1.                                  | = 51          | 1=2                  | 7 1=10                       |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                            |                   |                       |       |               |
| Me = 1.                                                                                      | $1 + \frac{\frac{1}{2} - c}{f}$                        | <u>f.</u> ×i=                         | 30 +          | 55 - 5               | $\frac{1}{1} \times 10 = 31$ | .48      | years                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $I_1 + \frac{\frac{1}{2} - c}{f}$ |                                         |                            |                   |                       |       |               |
| MODE                                                                                         | Com                                                    |                                       |               |                      | Dist                         |          |                          | MODE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Convert                           | it into S<br>de in us                   | imple<br>ual m             | Car III I I I I I |                       |       | ition and     |
|                                                                                              | andle Mic                                              | Dae in L                              | usual r       | nanne                | r.                           | -        |                          | Marke (X) NO. OF Studente (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                         |                            |                   |                       | (1)   |               |
| -                                                                                            | Age in yea                                             | ars (X)                               |               | N                    | o. of Person                 | ns (f)   | )                        | 0-10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                         |                            |                   |                       |       |               |
| 0 - 10 15                                                                                    |                                                        |                                       |               |                      |                              |          | 10-20                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                            | 18                |                       |       |               |
| 10-20 17                                                                                     |                                                        |                                       |               |                      |                              |          | 20-30 30                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                            |                   |                       |       |               |
| 20 – 30 19                                                                                   |                                                        |                                       |               |                      |                              |          | 30 – 40 18<br>40 – 50 12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                            |                   |                       |       |               |
|                                                                                              | 30 – 40 27<br>40 – 50 19                               |                                       |               |                      |                              |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                            |                   |                       |       |               |
|                                                                                              |                                                        |                                       |               |                      |                              |          |                          | that modal class is 30-40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                         |                            |                   |                       |       | <u>i</u> 1771 |
| By inspection, it is clear that modal class is $30-40$ .<br>$I_1 = 30$ f $0.7$ f $10$ i = 10 |                                                        |                                       |               |                      |                              |          |                          | By inspection, it is clear that not the second state of the secon |                                   |                                         |                            |                   |                       |       |               |
|                                                                                              |                                                        |                                       |               |                      |                              |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 50 1<br>$f_1 - f_0$             | xi = 30                                 | +                          | 30 - 1            | 18<br>8-18 ×          | 10=   | 35 marks      |
| 2=11+2                                                                                       | $\frac{f_1 - f_0}{f_1 - f_0}$                          | ×i = 3                                | 0+            | 27 -                 | <u>19</u><br>19-19 × 1       | 0 = 3    | 35 years                 | $Z = I_1 + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $f_1 - f_0 - f_2$                 |                                         | 2 ×                        | 30 - 1            |                       |       |               |
|                                                                                              | 0 - T <sub>2</sub>                                     | 2                                     | 2 :           | × 27 –               | 19-19                        |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                            |                   |                       |       |               |

9.56

1.00

3H

| Example                                                                                                        | 51. Calcul                                                       | late Mean,               | Median                  | and N          | Node tro         | NTI UTC | followin                          | g data:                    |                           |                                              | un un   | in Mod    | e from the     |  |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|-------------------------|----------------|------------------|---------|-----------------------------------|----------------------------|---------------------------|----------------------------------------------|---------|-----------|----------------|--|
| following o                                                                                                    | data:                                                            |                          |                         |                | 75               | 85      | Marks                             |                            | 10-19                     | 20 – 29 3<br>5                               | 0-30    | 40        | ule            |  |
| Mid-value                                                                                                      | CONTRACTOR OF THE OWNER                                          |                          | - Charlestone           | 65             | 75<br>8          | 3       | No. of S                          | students                   | 3                         | 5                                            | 9       | 40-4      | 50-50          |  |
| Frequenc                                                                                                       | y 2                                                              | 18                       | 24                      | 20             | 0                |         |                                   |                            |                           |                                              |         | 3         | 2              |  |
| MEAN: C                                                                                                        | muert it in                                                      | to Simple                | Frequence               | cy Dis         | stribution       | n and   | MEAN                              | : Convert                  | it into S                 | imple Free<br>ual manne                      | quency  | Distrib   | Lift's         |  |
| then calcul                                                                                                    | ate Mean i                                                       | n usual ma               | inner.                  | -              |                  |         | then cal                          | culate Me                  | an in us                  | ual manne                                    | er.     |           | ution and      |  |
| The second s |                                                                  | Street and in the second | No. of Concession, Name |                | fď               | 1       | Marks                             | No. of                     | Mid-                      | d = m -<br>(A = 34.                          | Α       | m al      |                |  |
| Mid-<br>value                                                                                                  | Frequency                                                        | (A = 55)                 | ď = <u>m</u>            | c <sup>c</sup> |                  | -       | (X)                               | Students                   | value                     | (A = 34.                                     | 5) a =  | m-A       | fd'            |  |
| (m)                                                                                                            | (1)                                                              | (A = 30)                 | (C = 1                  |                |                  |         |                                   | (f)                        | (m)                       |                                              | (C :    | = 10)     | 110            |  |
| 35                                                                                                             | 2                                                                | 20                       | -2                      |                | -4               |         | 10-19                             | 3                          | 14.5                      | -20                                          |         |           |                |  |
| 45                                                                                                             | 18                                                               |                          | -10 -1                  |                | -18              |         | 20-29                             | 5                          | 24.5                      | -10                                          |         | -2        | -6             |  |
| 55                                                                                                             | 24                                                               | 0                        | 0                       |                | 0                |         | 30 - 39                           |                            |                           | 0                                            | -1      |           | -5 0           |  |
| 65                                                                                                             | 20                                                               | 10                       | 1                       |                | 20               |         | 40-49                             | 3                          | 44.5                      | 10                                           |         | 1         |                |  |
| 75                                                                                                             | 8                                                                | 20                       | 2                       |                | 16               |         | 50 - 59                           | 2                          | 54.5                      | 20                                           |         | 2         | 3              |  |
| 85                                                                                                             | 3                                                                | 30                       | 3                       |                | 9                |         |                                   | Σf = 22                    |                           |                                              |         |           | 4              |  |
|                                                                                                                | $\Sigma f = 75$                                                  |                          |                         |                | $\Sigma fd' = 2$ | 23      |                                   |                            |                           |                                              |         | 2         | fd' = -4       |  |
| Mean (X) MEDIAN: ( and then calc                                                                               | $= A + \frac{\Sigma i d}{\Sigma i}$<br>Convert it it sulate Medi | into Simple              | e Freque                | incy l         |                  | tion    | MEDIAN                            | : Conve                    | rt it into                | 34.5 +<br>22<br>Simple F<br>n usual m        | requer  |           |                |  |
| Class-interv                                                                                                   |                                                                  |                          | -                       | 125-12202      |                  | - 11    |                                   |                            | Contraction of the second |                                              | anner.  | inner.    |                |  |
| Chase in the f                                                                                                 | ·= [A]                                                           | Frequency<br>(f)         |                         | C.             | L                |         | Ma                                | No. of                     | of Students c.f.          |                                              |         | alles M   |                |  |
| 30 - 4                                                                                                         | 30-40 2                                                          |                          |                         |                | 2                | - 11    |                                   | X)                         | a segurite serve          | (f)                                          |         |           | and the second |  |
| 40 - 5                                                                                                         |                                                                  | 18                       |                         | 20             |                  |         |                                   | - 19.5                     |                           | 3                                            |         | 3         |                |  |
| 50 - 60                                                                                                        |                                                                  | 24                       |                         | 44             |                  |         | 29.5 -                            |                            |                           | 5 8                                          |         |           |                |  |
| 60 - 70                                                                                                        |                                                                  | 20                       |                         | 64             |                  | 11      | 29.5 -                            |                            |                           | 9                                            |         | 17        |                |  |
| 70 - 80                                                                                                        | 70-80 8 72                                                       |                          |                         |                |                  |         | <b>39.5 - 49.5</b><br>49.5 - 59.5 |                            |                           | 3 20                                         |         |           |                |  |
| 80 - 90                                                                                                        | 80-90 3                                                          |                          |                         |                | 75               |         |                                   | 59.5                       |                           | 2 22                                         |         |           |                |  |
|                                                                                                                | N                                                                | $=\Sigma f = 75$         |                         | 15             |                  | - 11    |                                   |                            | N =                       | $\Sigma f = 22$                              |         |           |                |  |
| Me = $\frac{N}{2} = \frac{75}{2} = \frac{1}{5}$<br>Me = $1_1 + \frac{N_2}{5}$                                  | = c.f. =                                                         | 20 f=2                   | 4 i = 1                 | 0              |                  |         |                                   | l <sub>1</sub> = 29.5      | u.f. =                    | th item lies<br>$f = 9$ $+ \frac{11 - 8}{9}$ | i = 1   | 10        |                |  |
| MODE: Converting then calculate M                                                                              | rt it into Sir                                                   | male Freque              | 000.0                   | 4.44           |                  |         |                                   |                            |                           | 0                                            |         |           | 1.11           |  |
| then calculate M                                                                                               | ode in usu                                                       | al manner                | Chicy Dis               | suribu         | uon and          |         | ODE: Co                           | nvert it in                | to Simp                   | le Freque                                    | ncy Dis | stributio | n and          |  |
| Class-inte                                                                                                     | rval (V)                                                         | -                        |                         | Statistics and |                  | the     | en calculat                       | e Mode i                   | n usual                   | manner.                                      | •       |           |                |  |
| 1116                                                                                                           | in the (V)                                                       | 1                        | Frequen                 | icy            |                  |         |                                   | Contractor of a second     |                           |                                              | of Chur | tents     |                |  |
| 30 - 4                                                                                                         | 40                                                               | -                        | (1)                     |                |                  |         |                                   | Marks                      | 119460                    | NO.                                          | of Stud | 101110    |                |  |
| 40 - 5                                                                                                         |                                                                  |                          | 2                       |                |                  | 11 -    | 0                                 | (X)                        |                           |                                              | (f)     |           |                |  |
|                                                                                                                |                                                                  |                          | 18                      |                |                  | 11      | 9,                                | 5 - 19.5                   |                           |                                              | 3       |           |                |  |
|                                                                                                                | 30-60                                                            |                          |                         |                |                  |         | 29.5 - 29.5 5                     |                            |                           |                                              |         |           |                |  |
|                                                                                                                | 60 - 70 24<br>70 - 80 20                                         |                          |                         |                |                  |         | 29.5 - 39.5 9                     |                            |                           |                                              |         |           |                |  |
| -                                                                                                              | 8 00-90                                                          |                          |                         |                |                  |         | 39.5 - 49.5 3                     |                            |                           |                                              |         |           |                |  |
|                                                                                                                |                                                                  | 1                        | 3                       |                |                  |         | 49.                               | 5-59,5                     |                           |                                              | 2       |           |                |  |
| By inspection, it frequency of this c                                                                          | is clear the lass is may                                         | hat modal                | class is                | 30-            | 40 as            | By      | inspection                        | , it is cle                | ar that i                 | modal cla                                    | ss is 2 | 9.5-39.   | 5 as           |  |
| $l_1 = 50 f_1$                                                                                                 | - 24 4                                                           | 10, 1.6.                 | 21.                     |                |                  | freq    | uency of t                        | his class                  | is maxir                  | num, i.e. 9                                  | ).      |           |                |  |
| $l_1 = 50  f_1$                                                                                                | 0                                                                | $= 18 f_2 =$             | 20 1=                   | 10             | 1                |         |                                   |                            |                           |                                              |         | = 10      |                |  |
| $Z = I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_0}$                                                                 | -×i = 50 -                                                       | 24                       | 18                      | 10             |                  |         |                                   |                            |                           | 5 f <sub>2</sub> =                           | -       |           | arks           |  |
|                                                                                                                | 2                                                                | 2 × 24 - 1               | 8-20 ×                  | 10=            | 56               | Z=1     | $+\frac{f_1-f_0}{2f_1-f_0}$       | $\frac{1}{1} \times i = 2$ | 9.5 + 2                   | 9-5<br>9-5-3                                 | × 10 =  | 33.5 m    |                |  |
|                                                                                                                |                                                                  |                          |                         |                |                  |         |                                   | ~2                         | - /                       |                                              |         |           |                |  |

| Example 5<br>following da        | ata:                       |                            |                                    |                                     |                                                                                                                                        |            | Example 54<br>following dat                                                                     | . Calcu             | late Mea                         | ass-in           | terval       | 8         |                     |
|----------------------------------|----------------------------|----------------------------|------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------|---------------------|----------------------------------|------------------|--------------|-----------|---------------------|
| following                        | Less                       |                            | 0 20 40                            | 10 50                               |                                                                                                                                        | Above      | Class                                                                                           | a:                  |                                  | NI, NEU          | ian and      | Mode to   | rom the             |
| Class-<br>interval               | than<br>20                 | 20 - 30 30 - 40 40         |                                    | 40 - 50                             | 60 - 50 50 - 60 60                                                                                                                     |            | 30 -interval                                                                                    | 0-10                | 10-15                            | 15-20            | 20-30        | 30-40     | 40 50               |
| -014                             | 8                          | 12                         | 20                                 | 10                                  | 6                                                                                                                                      | 4          | No. of<br>Students                                                                              | 2                   | 3                                |                  |              |           | 40-50               |
| Frequency                        | issing C                   | lass lim                   | nits are as                        | sumed                               | in the                                                                                                                                 | following  |                                                                                                 |                     |                                  | 2                | 12           | 4         | 7                   |
| manner.                          |                            |                            |                                    |                                     |                                                                                                                                        |            | MEAN: Co<br>then calcula                                                                        | nvert it<br>te Mear | into Sim                         | ple Free         | quency       | Distribut | tion and            |
| Class- Fre                       | quency                     | Mid-<br>value              | $(\Delta - 45)$                    | $ d' = \frac{m - A}{C} \qquad fd' $ |                                                                                                                                        |            | Marks                                                                                           |                     | No. of                           |                  |              |           |                     |
| interval                         | (f)                        | (m)                        | (~ - +3)                           | (C =                                | 10)                                                                                                                                    |            | (X)                                                                                             |                     | tudents                          | Mid-value<br>(m) |              | fn        | 1                   |
| (X)                              |                            | 15                         | -30                                | -3                                  |                                                                                                                                        | 24         | and the second                                                                                  | 2                   | (f)                              |                  | ,m)          | 1. Start  | 1                   |
| 10-20                            | 8<br>12                    | 25                         | -20                                |                                     |                                                                                                                                        | -24<br>-24 | 0-1                                                                                             |                     | 2                                |                  | 5            |           | 10                  |
| 20 - 30                          | 20                         | 35                         | -10                                | -1                                  |                                                                                                                                        | -24        | 10-1                                                                                            |                     | 3                                | 1                | 12.5         | 37.5      |                     |
| 30 - 40                          | 10                         | 45                         | 0                                  | Ċ                                   |                                                                                                                                        | 0          | 15-20                                                                                           |                     | 2                                | 1 1              | 17.5         |           | 35                  |
| 40 - 50                          | 6                          | 55                         | 10                                 |                                     |                                                                                                                                        | 6          | 20-3                                                                                            |                     | 12                               |                  | 25           | 1 3       | 300                 |
| 50 - 60                          | 4                          | 65                         | 20                                 | 2                                   | 2                                                                                                                                      | 8          | 30-4                                                                                            | -                   | 4                                |                  | 35           |           | 140                 |
| 60-70<br>Σ1                      | f = 60                     |                            |                                    |                                     |                                                                                                                                        | Σfd'=-54   | 40-5                                                                                            |                     | 7<br>Σf = 30                     | -                | 45           |           | 315                 |
|                                  |                            | I'                         | -5                                 | 4                                   |                                                                                                                                        |            |                                                                                                 |                     |                                  |                  |              | -         | 837.5               |
| vlean (X) =                      | $A + \frac{210}{\Sigma f}$ | - × C                      | = 45 + <del>-5</del>               | - × 10                              | = 36                                                                                                                                   |            | Me                                                                                              | ean (X)             | $=\frac{\Sigma fm}{\Sigma f}=$   | 837.5<br>30      | = 27.92      |           |                     |
| MEDIAN:<br>e., Median            | There i<br>is calcu        | s no ne<br>lated ir        | eed to det<br>the usual            | miss<br>ər:                         | MEDIAN: Convert it into Simple Frequency Distribution<br>and then calculate Median in usual manner.                                    |            |                                                                                                 |                     |                                  |                  |              |           |                     |
| Class-in                         | terval                     | Fre                        | equency                            |                                     | c.f.                                                                                                                                   |            | Marks No. of St                                                                                 |                     |                                  |                  | tudents c.f. |           |                     |
| (X)                              |                            | 1.14                       | (f)                                |                                     |                                                                                                                                        |            | (X) (f                                                                                          |                     | (f)                              |                  |              |           |                     |
| Less than                        |                            |                            | 8                                  | 8                                   |                                                                                                                                        |            | 0-                                                                                              | 0 – 10              |                                  | 2                | 2 2          |           |                     |
| 20 -                             | - 30                       |                            | 12 20                              |                                     |                                                                                                                                        | 0          | 10-                                                                                             |                     |                                  | 3                |              | 5         |                     |
| 30 -                             | - 40                       |                            | 20                                 | 40                                  |                                                                                                                                        |            | 15 -                                                                                            |                     |                                  | 2                | 7            |           |                     |
| 40 -                             | 40 – 50 10                 |                            | 50                                 |                                     |                                                                                                                                        | 20 -       | 30                                                                                              | 1                   | 12                               | 19               |              |           |                     |
| 50 - 60                          |                            |                            | 6 56                               |                                     |                                                                                                                                        | 6          | 30 -                                                                                            |                     |                                  | 4                |              | 23<br>30  |                     |
| Above 60                         |                            | 4                          | 4 60                               |                                     |                                                                                                                                        | 40 -       | 50                                                                                              | N                   | 7<br>: Σf = 30                   |                  | 30           |           |                     |
|                                  |                            | N =                        | = Σf = 60                          |                                     |                                                                                                                                        |            |                                                                                                 |                     |                                  |                  |              |           |                     |
| $he = \frac{N}{2} = \frac{6}{2}$ |                            |                            | 30 <sup>th</sup> item<br>20 f = 20 |                                     |                                                                                                                                        | 30 - 40    | $Me = \frac{N}{2} = \frac{3}{2}$                                                                |                     | 5 <sup>г.н</sup> .<br>n;<br>c.f. |                  |              |           | 0 - 30              |
| Me = I <sub>1</sub> +            |                            |                            | 30 + 30 -                          |                                     | $M\Theta = I_1 + \frac{\frac{N_2 - c.f.}{f} \times i}{f} = 20 + \frac{15 - 7}{12} \times 10 = 26.67$                                   |            |                                                                                                 |                     |                                  |                  |              |           |                     |
|                                  |                            |                            | -                                  | •                                   |                                                                                                                                        |            | HODELC                                                                                          | nuort i             | t into Sit                       | nole Fr          | equenc       | y Distrit | ution and           |
| UDE: To                          | calcula                    | te mod                     | e, there is                        | no ne                               | ed to                                                                                                                                  | complete   | MODE: Convert it into Simple Frequency Distribution and<br>then calculate Mode in usual manner. |                     |                                  |                  |              |           |                     |
| e class-inte                     | ervals.                    |                            |                                    |                                     |                                                                                                                                        |            |                                                                                                 |                     |                                  |                  | No. of S     | Student   | s (f)               |
|                                  | -interva                   |                            | and a company                      | Freque                              | ncy (f                                                                                                                                 | )          | N                                                                                               | larks (2            |                                  |                  |              | 2         |                     |
| Les                              | s than 2                   |                            | REF BAR RES                        | Fiedre<br>8                         |                                                                                                                                        |            | 0-10 5                                                                                          |                     |                                  |                  |              |           |                     |
| -00;                             | 20 0                       | 0                          |                                    | 12                                  |                                                                                                                                        |            |                                                                                                 |                     |                                  |                  | 12           |           |                     |
| 20 - 30                          |                            |                            |                                    |                                     |                                                                                                                                        |            | 20 - 30<br>30 - 40                                                                              |                     |                                  |                  | 4            |           |                     |
| 30 – 40 20<br>40 – 50 10         |                            |                            |                                    |                                     |                                                                                                                                        |            | 10 50                                                                                           |                     |                                  |                  |              |           |                     |
|                                  | 40 - 5                     | 0                          |                                    |                                     | 40 - 50                                                                                                                                |            |                                                                                                 |                     |                                  |                  |              |           |                     |
|                                  | 50 - 6                     |                            |                                    |                                     | By inspection, it is clear that modal class is 20-30 as                                                                                |            |                                                                                                 |                     |                                  |                  |              |           |                     |
| Inepa-u                          | Above 6                    | THE R PROPERTY AND INCOME. |                                    | 1. 01                               |                                                                                                                                        | Sthie C    | IASS IS II                                                                                      | ICT VILLER          |                                  |                  |              |           |                     |
| ency of                          | n, it is<br>this cla       | clear i<br>ss is 20        | hat moda                           | IS 30                               | By inspection, it is clear that the frequency of this class is maximum, i.e. 12.<br>$f_1 = 20$ $f_1 = 12$ $f_0 = 5$ $f_2 = 3$ $i = 10$ |            |                                                                                                 |                     |                                  |                  |              |           |                     |
| 1-3                              | $v_1 =$                    | 20 f                       | $_{0} = 12$ $f_{2}$                | = 10                                | i = 1                                                                                                                                  |            | - fa                                                                                            |                     | 0+                               | 12-5             | × 10         | = 24.67   |                     |
| $=  _1 + \frac{t_1}{2t}$         | - fo                       | 1 - 30                     | + <u>20 -</u><br>2 × 20 -          | 12                                  | - x 10                                                                                                                                 | = 34.44    | $Z = I_1 + \frac{1}{2f_1}$                                                                      | - to - t            | -x1= 2                           | 2×               | 12-5-        | - 4       | 17. se <sup>-</sup> |
| <11-                             | $f_0 - f_2$                | 00                         | 2 × 20 -                           | 12-10                               | )                                                                                                                                      |            |                                                                                                 |                     |                                  |                  |              |           |                     |

Statistics for Class XI



1. MEDIAN Me = Size of  $\left(\frac{N+1}{2}\right)^{\text{th}}$  item {In Odd Number series} Individual Series Average of two items lying on either side of  $\left(\frac{N+1}{2}\right)^{th}$ {In Even Number series Me = Size of  $\left(\frac{N+1}{2}\right)^{\text{th}}$  item **Discrete Series** Determine Median Class as  $\left[\frac{N}{4}\right]^{\text{th}}$  item and apply the formula: **Continuous Series**  $Me = I_1 + \frac{\frac{N}{2} - c.f.}{4} \times i$ 2. LOWER QUARTILE  $Q_1 = \text{Size of } \left(\frac{N+1}{4}\right)^{\text{th}}$  item Individual Series  $Q_1 = \text{Size of } \left(\frac{N+1}{4}\right)^{\text{th}}$  item **Discrete Series** Determine Quartile Class as  $\left[\frac{N}{4}\right]$ <sup>th</sup> item and apply the formula: **Continuous Series**  $Q_1 = I_1 + \frac{\frac{N}{4} - c.f.}{4} \times i$ **3. UPPER QUARTILE**  $Q_3 = \text{Size of } 3\left(\frac{N+1}{4}\right)^{\text{th}}$  item Individual Series  $Q_3 = \text{Size of } 3\left(\frac{N+1}{4}\right)^{\text{th}}$  item **Discrete Series Continuous Series** Determine Quartile Class as  $3 \left[ \frac{N}{4} \right]^{\text{th}}$  item and apply the formula:  $Q_3 = I_1 + \frac{\frac{3N}{4} - c.f.}{4} \times i$ 

| Measures of Central Te       | endency — Median and Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. MODE<br>Individual Series | 9.61<br>Mode is the value, which convert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Discrete Series              | frequency, then Mode is the value corresponding to the highest frequency (Other is a single maximum use Grouping Method)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Continuous Series            | Step 1: Determine the Modal Class: (i) By inspection, if frequencies are regular,<br>homogeneous and there is a single maximum frequencies are regular,<br>(ii) Grouping Marine |
|                              | Step 2: Apply the following formula: Mo = $I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times I_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### Abbreviations of Mode, Median, Lower Quartile and Upper Quartile

- Me = Median
- Q<sub>1</sub> = Lower Quartile
- Q<sub>3</sub> = Upper Quartile
- I1 = Lower limit of the median class or Quartile class or modal class
- c.f. = Cumulative frequency of class preceding median or Quartile class
- f = Simple frequency of the median or Quartile class
- i = Class-interval of the median class or Quartile class or modal class
- N = Number of items

Mo = Mode

f<sub>1</sub> = Frequency of the modal class

Frequency of the class preceding the modal class

f<sub>2</sub> = Frequency of the class succeeding the modal class