Statistics for Class XI

$$(\overline{X}_{X,Y}) = \frac{(500 \times 186) + (600 \times 175)}{500 + 600} = \frac{1,98,000}{1,100} = ₹ 180$$

 (ii) Income of village X = 500 × 186 = ₹ 93,000 Income of village Y = 600 × 175 = ₹ 1,05,000 Thus, Village Y has a larger income.

(iii) Coefficient of Variation of Village X (C.V._X) = $\frac{\sigma}{\overline{X}_{x}} \times 100 = \frac{9}{186} \times 100 = 4.84\%$

Coefficient of Variation of Village Y (C.V._Y) =
$$\frac{\sigma}{\overline{X}_{y}} \times 100 = \frac{10}{175} \times 100 = 5.71\%$$

There is more variability in Village Y.

Ans. (i) Average income of the village X and Y taken together = ₹ 180;

- (ii) Village Y has a larger income;
- (iii) In village Y, variation in income is greater.

Example 48. For a group of 200 candidates, the mean and standard deviation were found to be 40 and 15. Later on it was discovered that the score 43 was misread as 53. Find the correct mean and standard deviations corresponding to the corrected figure.

Solution:

Calculation of Correct Mean

$$\overline{X} = \frac{\Sigma X}{N}$$

Or,
$$\Sigma X = XN$$

 $\overline{X} = 40; N = 200$

$$\Sigma X = 40 \times 200 = 8,000$$

But 8,000 is a wrong value as one score was misread as 53 instead of 43 Correct ΣX = 8,000 - incorrect item + correct item = 8,000 - 53 + 43 = 7,990

Correct
$$\overline{X} = \frac{\Sigma X}{N} = \frac{7,990}{200} = 39.95$$

Calculation of Correct Standard deviation

$$\sigma = \sqrt{\frac{\Sigma X^2}{N} - (\overline{X})^2}$$

$$15 = \sqrt{\frac{\Sigma X^2}{200} - (40)^2}$$

$$15 = \sqrt{\frac{\Sigma X^2}{200} - 1,600}$$

Squaring both the sides

Measures of Dispersion

22

C

C

C

$$225 = \frac{\Sigma X^2}{200} - 1,600$$

$$225 \times 200 = \Sigma X^2 - 1,600 \times 200$$

$$225 \times 200 = \Sigma X^2 - 1,600 \times 200$$

$$EX^2 = 3,20,000 + 45,000 = 3,65,000$$
But, it is incorrect value
Correct $\Sigma X^2 = 1$ ncorrect $\Sigma X^2 - (1$ ncorrect items)² + (Correct items)²
Correct $\Sigma X^2 = 3,65,000 - (53)^2 + (43)^2 = 3,65,000 - 2,809 + 1,849 = 3,64,040$
Correct $\sigma = \sqrt{\frac{Correct \Sigma X^2}{N} - (Correct \overline{X})^2}$
Correct $(\sigma) = \sqrt{\frac{3,64,040}{200} - (39.95)^2} = \sqrt{1,820.2 - 1,596} = \sqrt{224.2} = 14.97$
Ans. Correct Mean = 39.95 marks; Correct Standard Deviation = 14.97 marks

Calculate variance and coefficient of variation from the following data:

Example	2	6	10	14
Values	4	8	2	1
Frequency				

Solution:
 Frequency (f)
 fX

$$x = X - \overline{X}$$
 x^2
 fx^2

 2
 4
 8
 -4
 16
 64

 6
 8
 48
 0
 0
 0

 10
 2
 20
 +4
 16
 32

 14
 1
 14
 +8
 64
 64

 N = $\Sigma f = 15$
 $\Sigma f X = 90$
 $\Sigma f x^2 = 160$

Arithmetic Mean
$$(\overline{X}) = \frac{\Sigma f X}{\Sigma f} = \frac{90}{15} = 6$$

$$(\sigma) = \sqrt{\frac{\Sigma x^2}{N}} = \sqrt{\frac{160}{15}} = 3.2659$$

Variance = $\sigma^2 = (3.2659)^2 = 10.66$

Coefficient of Variation
$$=\frac{\sigma}{\sqrt{2}} \times 100 = \frac{3.2659}{6} \times 100 = 54.43\%$$

Ans. Variance = 10.66; Coefficient of Variation = 54.43%

(iii) Comple 50. For the following data, calculate: (i) Standard Deviation; (ii) Variance;

(iii) Coefficient of S	tandard Deviat	ion; (iv) Coefficie	20-39	40-49	5059
Class	10-19	20-29	6	2	3
Frequency	4	5			

10.50

10.52

Solution:

This is a case of inclusive class-intervals. So, it has to be convert	ed into exclusive serie
---	-------------------------

d'2	fd"	$a'' = \frac{m - A}{C}$ $C = 10$	d = m - A $(A = 24.5)$	Mid-point (m)	No. of students (f)	Marks (X)
	-4	- 1	- 10	14.5	4	9.5-19.5
-1	0	0	0	24.5 (A)	5	19.5-29.5
0	+6	+ 1	+ 10	34.5	6	29.5-39.5
1	+ 4	+2	+ 20	44.5	2	9.5-49.5
4	+ 9	+ 3	+ 30	54.5	3	9.5-59.5
9	$\Sigma f d' = 15$				$N = \Sigma f = 20$	

×C

(i) Standard deviation (
$$\sigma$$
) = $\sqrt{\frac{\Sigma f d'^2}{N} - \left(\frac{\Sigma f d'}{N}\right)^2}$

 $\Sigma fd'^2 = 45; N = 20; \Sigma fd' = 15; C = 10$

$$\sigma = \sqrt{\frac{45}{20}} - \left(\frac{15}{20}\right)^2 \times 10 = \sqrt{2.25 - .5625} \times 10 = \sqrt{1.6875} \times 10 = 12.99$$

(ii) Variance = $\sigma^2 = (12.99)^2 = 168.74$

- (iii) We know: Coefficient of Standard Deviation $=\frac{\sigma}{\overline{X}}$ Mean (\overline{X}) = A + $\frac{\Sigma f d'}{\Sigma f} \times C = 24.5 + \frac{15}{20} \times 10 = 32$
 - Coefficient of Standard Deviation $=\frac{12.99}{32}=0.406$

(iv) Coefficient of Variation (C.V.) = $\frac{\sigma}{\overline{X}} \times 100 = \frac{12.99}{32} \times 100 = 40.6\%$ Ans. (i) Standard Deviation = 12.99; (ii) Variance = 168.74; (iii) Coefficient of Standard Deviation = 0.406;

Age Group (years)	<u> </u>	more uniform.
	No. of I	Persons
0-10	Choup A	Group B
10-20	5	7
20-30	15	- /
30-40	20	12
40-50	25	22
50-60	18	30
00-00	10	20

Measures of Dispersion

Statistics for Class X

solution: In order to find which group is more uniform, we shall have to compare the coefficient of variation (C.V.) of

10.53

T

Calculation of Coefficient of Varia

Ane Group	No. of	Mid-points	d = m - A	(Group A)			
Ay ^c (X)	persons (1)	(m)	(A = 25)	$d' = \frac{m - A}{C}$ $C = 10$	fď	d'2	fd"2
0-10	5	5	- 20	10			
10-20	15	15	- 10	-2	- 10	4	20
20-30	20	25 (A)	0	-1	- 15	1	15
30-40	25	35	+ 10	0	0	0	0
40-50	18	45	+ 20	+1	+ 25	1	25
50-60	10	55	+ 30	+2	+ 36	4	72
60-70	7	65	+ 40	+3	+ 30	9	90
STREET STREET	$N = \Sigma f = 100$. +0	+4	+ 28	16	112
					Σfd' = 94		$\Sigma f d'^2 = 334$

To calculate coefficient of variation, we will first calculate standard deviation and arithmetic mean.

$$\sigma = \sqrt{\frac{\Sigma f d'^2}{N} - \left(\frac{\Sigma f d'}{N}\right)^2} \times C = \sqrt{\frac{334}{100} - \left(\frac{94}{100}\right)^2} \times 10$$

$$\sigma = \sqrt{3.34 - 0.883} \times 10 = 15.67$$

Mean (\overline{X}) = A + $\frac{\Sigma f d'}{\Sigma f} \times C = 25 + \frac{94}{100} \times 10 = 34.4$

Coefficients of Variation (C.V.) = $\frac{\sigma}{\overline{X}} \times 100 = \frac{15.67}{34.4} \times 100 = 45.55\%$

Calculation of Coefficient of Variation (Group B)

Ace O								
Age Group (X)	No. of persons (f)	Mid-points (m)	d = m - A (A = 25)	$d' = \frac{m - A}{C}$ $C = 10$	fd'	d ^{r2}	fdr2	
0-10	7	5	- 20	-2	- 14	4	28	
20.20	12	15	- 10	-1	- 12	1	12	
30 40	22	25 (A)	0	0	0	0	0	
40 50	30	35	+ 10	+1	+ 30	1	30	
50-50	20	45	+ 20	+2	+ 40	4	80	
60-70	5	55	+ 30	+3	+ 15	9	45	
0100	4	65	+ 40	+4	+ 16	16	64	
	$N = \Sigma f = 100$			S. A. Marson	Σfd' = 75	- Sun al shi	Σfd' ² = 259	

Statistics for Class

To calculate coefficient of variation, we will first calculate standard deviation and arithmetic mean

$$\sigma = \sqrt{\frac{\Sigma f d'^2}{N} - \left(\frac{\Sigma f d'}{N}\right)^2} \times C = \sqrt{\frac{259}{100} - \left(\frac{75}{100}\right)^2} \times 10$$

$$\sigma = \sqrt{2.59 - 0.5625} \times 10 = 14.24$$

Mean (\overline{X}) = A + $\frac{\Sigma f d'}{\Sigma f} \times C = 25 + \frac{75}{100} \times 10 = 32.5$
Coefficient of Variation (C.V.) = $\frac{\sigma}{\overline{X}} \times 100 = \frac{14.24}{32.5} \times 100 =$

Ans. Coefficient of variation of Group B (43.82%) is less than that of Group A (45.55%), so Group B is more uniform.

43.82%

10.22 PROPERTIES OF STANDARD DEVIATION

1. The sum of the square of the deviations of the items from their arithmetic mean is the minimum. The sum is less than the sum of the square of the deviations of the items from any other value.

It is made clear with the following illustration:

X	$\begin{array}{c} X - \overline{X} \\ \overline{X} = 7 \end{array}$	$(X-\overline{X})^2$	X-8	(X - 8) ²
3	-4	16	- 5	25
5	-2	4	- 3	9
8	+ 1	1	0	0
12	+ 5	25	+ 4	16
		$\Sigma(X-\overline{X})^2 = 46$		$\Sigma(X - 8)^2 = 50$

It is clear from the above example that sum of the squares of deviations from mean (46) is less than the sum of squares of deviations (50) taken from assumed mean.

- 2. Standard deviation is independent of change of origin, i.e. value of standard deviation remains the same if in a series, a constant is added (or subtracted) to all observations.
- 3. Standard deviation is affected by change of scale, i.e. if all the observations are multiplied or divided by a constant, then the standard deviation also gets multiplied (or divided)^{by} this constant.
- 4. Standard deviation of the combined series: Like the arithmetic mean, it is possible to compute combined standard deviations of two or more groups.

{Combined Standard Deviation is discussed in detail in Section ^{10,23}

5. For a given set of observations, *standard deviation is never less than mean deviation* from *mean*, i.e., Standard Deviation > Mean Deviation from mean.

Measures of Dispersion

10.23 COMBINED STANDARD DEVIATION

σ

10.23 We can calculate mean of two or more than two series, we can also compute combined As we can calculate mean of two or more than two series. The formula in case of two series:

$$_{1,2} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}{N_1 + N_2}}$$

- Where $\sigma_{1,2}$ = Combined standard deviation of two groups
 - $\sigma_1 = \text{Standard deviation of first group}$
 - = Standard deviation of second group

 $\bar{X}_{1,2}$ = Combined arithmetic mean of two groups

 \bar{X}_1 = Arithmetic mean of first group

σ

 \bar{X}_2 = Arithmetic mean of second group

- N_1 = Number of observations of first group
- N_2 = Number of observations of second group

This formula can be extended upto N number of series. If there are three series, then the combined standard deviation is:

$$I_{1,2,3} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_3 \sigma_3^2 + N_1 d_1^2 + N_2 d_2^2 + N_3 d_3^2}{N_1 + N_2 + N_3}}$$

Where,

$$d_1^2 = (\overline{X}_1 - \overline{X}_{1,2,3})^2$$
, $d_2^2 = (\overline{X}_2 - \overline{X}_{1,2,3})^2$, and $d_3^2 = (\overline{X}_3 - X_{1,2,3})^2$

Example 52. Find the combined standard deviation from the following data:

	Boys	Girls
Numb	30	20
Mannber	20	30
Standard		5
deviation		

Solution:

To calculate combined standard deviation, we will have to first calculate combined mean:

$$\frac{\text{Combined Mean}(\overline{X}_{1,2})}{\overline{X}_1 = 20, \overline{X}_2 = 30, N_1 = 30, N_2 = 20}$$

10.55

$$\overline{X}_{1,2} = \frac{(30 \times 20) + (20 \times 30)}{30 + 20} = \frac{1,200}{50} = 24$$

Calculation of Combined Standard Deviation

$$\sigma_{1,2} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}{N_1 + N_2}}$$

$$d_1 = \overline{X}_1 - \overline{X}_{1,2} = 20 - 24 = -4$$

$$d_2 = \overline{X}_2 - \overline{X}_{1,2} = 30 - 24 = 6$$

Now: $N_1 = 30, \sigma_1 = 4, N_2 = 20, \sigma_2 = 5, d_1 = -4, d_2 = 6$

$$\sigma_{1,2} = \sqrt{\frac{30(4)^2 + 20(5)^2 + 30(-4)^2 + 20(6)^2}{30 + 20}}$$

$$\sigma_{1,2} = \sqrt{\frac{480 + 500 + 480 + 720}{50}} = \sqrt{43.6} = 6.6$$

Ans. Combined Standard Deviation = 6.6

Example 53. Mean and standard deviations of two distributions of 100 and 150 items are 50,5 and 40, 6 respectively. Find the standard deviation of all the 250 items taken together:

Solution:

First we will calculate combined mean: Combined Mean $(\overline{X}_{1,2}) = \frac{N_1 \overline{X}_1 + N_2 \overline{X}_2}{N_1 + N_2}$ $\overline{X}_1 = 50, \, \overline{X}_2 = 40, \, N_1 = 100, \, N_2 = 150$ $\overline{X}_{1,2} = \frac{(100 \times 50) + (150 \times 40)}{100 + 150} = \frac{11,000}{250} = 44$

Calculation of Combined Standard Deviation

$$\sigma_{1,2} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}{N_1 + N_2}}$$

$$d_1 = \overline{X}_1 - \overline{X}_{1,2} = 50 - 44 = 6$$

$$d_2 = \overline{X}_2 - \overline{X}_{1,2} = 40 - 44 = -4$$
Now: N₁ = 100, $\sigma_1 = 5$, N₂ = 150, $\sigma_2 = 6$, $d_1 = 6$, $d_2 = -4$

$$\sigma_{1,2} = \sqrt{\frac{100(5)^2 + 150(6)^2 + 100(6)^2 + 150(-4)^2}{100 + 150}}$$

$$\sigma_{1,2} = \sqrt{\frac{2,500 + 5,400 + 3,600 + 2,400}{250}} = \sqrt{55.6} = 7.456$$
Ans. Combined Standard Deviation = 7.456

Measures of Dispersion

Statistics for Clar

10.24 MERITS, DEMERITS AND USES OF STANDARD DEVIATION

Merits of Standard Deviation

- Based on all Values: Standard deviation considers every item of the series. So, a change in even one value affects the value of standard deviation.
- 2. Rigidly Defined: Standard deviation is by far the most important and widely used measure of dispersion. It is rigidly defined, i.e. it is a definite measure of dispersion.
- 3. Less effect of fluctuations in sampling: If several independent samples are drawn from the same population, it may be observed that standard deviation is least affected from sample to sample as compared with other measures of dispersions.
- 4. Algebraic Treatment: Standard Deviation is capable of further algebraic treatment. For example, if standard deviations of a number of groups are known, their combined standard deviation can be computed.
- 5. Better mathematical process: The squaring of the deviations removes the drawback of ignoring the signs of deviations (as done in case of mean deviation).

Demerits of Standard Deviation

- 1. Difficult to Compute: Standard deviation is more difficult to be measured as compared to other measures of dispersion.
- 2. More stress on extreme items: It gives more weightage to extreme values and less to those which are nearer to mean.
- 3. Depend upon units of measurement: It depends upon the units of measurement of the observations. So, it cannot be used to compare the dispersion of the distributions expressed in different units.

Uses of Standard Deviation

- 1. Standard deviation can be used to compare the dispersions of two or more distributions when their units of measurements and arithmetic means are same.
- 2. It is used to test the reliability of mean. Mean of a distribution with least standard deviation is said to be more reliable.

10.25 CHOICE OF A SUITABLE MEASURE OF DISPERSION

We have already studied the merits and demerits of the four measures of dispersion namely ^{range}, quartile deviation, mean deviation and standard deviation. Let us now make a comparative ^{study} of all the four measures. It would help in the selection of an appropriate measure of dispersion ^{for a} particular problem under study:

1. Rigidly defined: All the four measures of dispersion are rigidly defined and their values are definite.

1

IN

Statistics for Class XI

- **2.** Calculations: It is easy to calculate range and quartile deviation. But the calculations of a little more complicated.
- Based on values: The range and quartile deviation do not depend on all values, whereas
- 4. Algebraic Treatment: In terms of algebraic treatment, standard deviation is considered to be the best measure of dispersion.

Conclusion

- 1. Range: It is the simplest to calculate, but it is an unstable measure as it is considerably affected by the extreme values. This method is advisable only when the variation in the size of items is very little.
- 2. Quartile deviation: The quartile deviation is a better measure than range as it is not affected too much by the values of extreme items. It is easily calculated and is readily understood However, quartile deviation has no algebraic properties and its interpretation is difficult
- 3. Mean Deviation: Mean deviation is based on all the items, but it ignores the signs of deviation and cannot be used for further algebraic treatment.
- 4. Standard deviation: Standard deviation is rigidly defined and is based on all the observations. It is capable of algebraic treatment and is not affected very much by fluctuations of sampling. So, the standard deviation scores over all other measures of dispersion.

However, it should be kept in mind that standard deviation gives comparatively greater importance to extreme variations, which should usually be ignored.

0. MC	Mean Deviation			
1.	It is based on simple	Standard Deviation		
	absolute deviations	It is based on the square root of the average of the		
2.	Mean deviation can be com-	squared deviations.		
	median or mode and its value differs in these cases (unless the distribution is normal)	The standard deviation is always calculated from the arithmetic mean.		
3.	Mean Deviation does and his			
	algebraic signs (plus or minus) in its calculation which is illogical.	In calculation of standard deviation, the deviations are squared. So, the olus and minus signs need		
4.	Mean Deviation is not an	not be omitted.		
	treatment as it considers only the absolute values. So, it is not possible to compute combined mean deviation.	Standard deviation is capable of further algebraic treatment, i.e., we can find the combined standard deviation of two or more series.		

Comparison Between Mean Deviation and Standard Deviation

Neasures of Dispersion

mparison Between Different Measures of Dispersion

Contra	Range	Quartile Deviation	0001			
Basis	It is the difference	It is half the difference	Mean Deviation	Standard Deviation		
1	and the smallest item of a series.	between the third and the first quartile.	mean of the deviation of all the values taken from an average.	It is the square root of the arithmetic mean of the squares of deviation of items from		
adoulations	It is easiest to cal-	It is easy to calculate	14 :	their arithmetic mean.		
Calculate	culate and simple to understand.	and simple to under- stand.	It is difficult to calcu- late as compared to range and quartile de- viation, but it is simple to understand	It involves difficult calculations.		
Based on items	It is based on only two items of the series, the largest and the smallest.	It covers only 50% items.	It is based on all the items of the series.	It is based on all the items of the series.		
Effect of Extreme Items	It is highly affected by the extreme values.	It is not unduly affected by extreme values.	It is less affected by extreme values.	It is affected by extreme values.		

10.26 LORENZ CURVE

The Lorenz Curve is a graphic method of studying dispersion. It was devised by Dr. Max O. Lorenz, a famous economics statistician. This curve was used by him to measure the inequalities of income or wealth of a society.

Now a days, the curve is also used to study the distribution of profit, wages, turnover, etc. However, still the most common use of this curve is to show inequality of income or wealth in a country.

Steps involved in Drawing a Lorenz Curve

- Step 1. Calculate cumulative values of size of items (in case of discrete series) or mid-points (in case of continuous series).
- Step 2. Calculate percentages for these cumulative values. For this, the last cumulative total is considered as equal to 100 and then percentages are obtained.

Step 3. Determine cumulative frequencies.

Step 4. Calculate the percentage for each cumulative frequency. For this, the last cumulative total is considered as equal to 100 and then percentages are obtained.

Step 5. On the X-axis, start from 0 to 100 and take the percentage of cumulative frequencies. Step c

Step 6. On the Y-axis, start from 0 to 100 and take the percentage of variable. Step 5. Step 7, Draw a diagonal line joining 0 to 100. This line is known as "Line of Equal Distribution"

or "Equality line".

10.59

Statistics for Class XI

Step 8. Plot the various points corresponding to the values of the variables X and Y and the variables x = 0 and y = 0. Plot the various points correspondence and then in the points with a smooth free hand curve. The curve so obtained shows the actual join these points with a smooth free hand curve.distribution. This curve is known as Lorenz Curve.

Important Points of Interpretation of Lorenz Curve

- If the distribution is uniform, the Lorenz Curve will coincide with the line of equal distribution. Generally, the Lorenz curve lies below the line of equal distribution.
- The area between the line of equal distribution and the Lorenz curve gives the extent of inequality in the items. The larger the area, more is the inequality.
- If curves of various distributions are shown on the same Lorenz presentation, the curve that is farthest from the diagonal line represents greatest inequality.

The following example will help us in understanding this phenomenon.

Example 54. From the following details of monthly income, draw a Lorenz curve.

Income (in '000 ₹)	0–10	10–20	20-30	30-40	40-50
No. of persons		4	5	7	5	4
Solution:						
Monthly M	id-Value	Cumulative	% Cumulativ	e No. of	Cumulative	% Cumulative

Income (₹)	(₹)	Mid-values	Mid-values	Persons (f)	Frequency (c.f.)	% Cumulative Frequency
0–10	5	5	4	4	4	16
10-20	15	20	16	5	9	36
20-30	25	45	36	7	16	64
30-40	35	80	64	E	01	84
40-50	45	100		5	21	01
10 00	40	125	100	4	25	100

The curve drawn is farther from the line of equal distribution. So, there is inequality in distribution of income

Measures of Dispersion

Example 55. From the following table, draw Lorenz curve for number of persons in Group A d B and interpret the result.

anu 2	20	30		
Profit Earnor (Group A)	6	8	50	60
No. of Persons (Group B)	15	10 10	12	14
No. of Persone		10 9	11	5

Solution:

Profi	t Cumulative	Cumulative	- Group A			Group B		
Earne (₹in '0	ed Profit 00) (₹)	(%)	No. of Cumulative Cumulative Persons No. (%)		Cumulative	No. of	Cumulative	Cumulative
20	20	10	6	6	12	15	NO.	(%)
30	50	25	8	14	28	10	15	30
40	90	45	10	24	48	0	25	50
50	140	70	12	36	72	11	34	68
60	200	100	14	50	100	5	40 50	90

The Lorenz curve of Group B is farthest from the line of equal distribution. So, Group B shows greater inequality as compared to Group A.

10.27 MERITS AND DEMERITS OF LORENZ CURVE

Merits of Lorenz Curve

1. Lorenz Curve is attractive and it gives a rough idea of extent of dispersion.

2. With the help of Lorenz curve, it becomes easy to compare two or more series.

Demerits of Lorenz Curve

Lorenz Curve Lorenz curve gives only a relative idea of the dispersion as compared with the line of equal distribution. distribution. It does not provide us any numerical value of the variability for the given distribution. ². The method of drawing Lorenz Curve is very difficult.

2

New Year

FORMULAE AT A GLANCE

Statistics for Cla

1

2

ms from a measure of

e deviations measured

What is the meaning of Lorenz Curve? State the steps involved in drawing a Lorenz Curve. stration and Standard Deviation on the basis of: Unsolved Practicals

Range

Individual Series

1. Calculate Range and coefficient of range of the following series, which gives the monthly expenditure (in ₹) of seven students: 22, 35, 32, 45, 42, 48, 39

{Range = ₹26; Coefficient of range = 0.37)

2. Find range and coefficient of range from the weekly wage (in ₹) of 10 workers of a factory: 310, 350, 420, 105, 115, 290, 245, 450, 300, 375. {Range = ₹345; Coefficient of range = 0.62}

Discrete Series

culate standard deviation

asuring it.

JICS OI L		a destanta destada a destada a algor		Second and the second	1
uate coefficient	of quartile devi	ation from the fo	llowing data:		
In line .		and the second designed and the se	0		
alcon	200	300	100		
(Less than)	200 8	300	400	500	600

cotimate an appropriate measure of dispersion for the following data:

13. Estime	Less than 25	25.20		7	
WARRS (?)		25-30	30-35	35-40	Above 40
way	2	10	26	16	7
				and the second s	And and a second s

Hint: It is an open-end series. So, it will be appropriate to find out quartile deviation and its coefficient.

{Quartile Deviation = ₹3.40; Coefficient of Quartile Deviation = 0.1}

Mean Deviation

Individual Series

14. Calculate the mean deviation from median and its coefficient from the following data: 100, 150, 80, 90, 160, 200, 140

{Mean deviation from Median = 34.28; Coefficient of Mean deviation = 0.245}

Compute Mean deviation and its coefficient by mean from the data given below:

5. Comput									070	200
	210	220	225	225	225	235	240	250	270	200
X	210	LLU				Non 17	6. Coofficie	ent of Mea	n Deviatio	n = 0.074

(Mean Deviation = 17.6; Coeffi

Discrete Series

16. Following are the marks of the students. Find mean deviation and coefficient mean deviation from / mean

			1	00	25	30	35	40
Marks	5	10	15	20	25	40	12	14
Marko	10	32	36	44	28	18	15	0.001
No. of students	10	JE				Hisiant of 1	Jean devial	jon = 0.30)

(Mean deviation = 7.65 marks; Coefficie

17. Find out the mean deviation from the median and its coefficient.

ind out the mean de	Sviation non	1	2 13	14
Marks	10	11 12	12	3
No. of students	3	12 1	(Mean devia	tion = 0.75 marks)

Continuous Series

AND

18. Compute the mean deviation from the median and from the mean for the following distribution of the scores of 50 college students: 190-200 180-190 - 100

	ege etter	100	160-170	170-180	100 100	3
Scores	140-150	150-160	10	18	9	5
Frequency	4	6	in ce marks	Mean deviation	from median	= 10.24 marks/

(Mean deviation from mean = 10.56 mark

19.	Find the mea	n deviation fro	m mean	and its coe	fficient for th	e given data.

ne mean de	viation from me	an and its coe	efficient for the	ə givən data:	S for Class XI
X	0–10	10-20	20-30	30-40	40 50
F	3	5	7	2	40-50 50-60
ate mean d	eviation and its	{Mean deviation (Mean deviation) {	on from mean == m the followin	14.33; Coefficients;	cient of Mean deviation = 0.44

20. Calculate mean deviation and its coefficient from the following figures:

Constanting and		
	Class-Interval	Frequency
	Less than 10	5
	Less than 20	12
	Less than 30	20
	Less than 40	35
	Less than 50	54
	Less than 60	60

Standard Deviation

Hint: Mean deviation is calculated from median as it is a constant and representative value,

(Mean deviation from median = 11.61; Coefficient of Mean deviation = 0.32)

Individual Series

21. Calculate the standard deviation from the following values: 8, 9, 15, 23, 5, 11, 19, 8, 10, 12.

{Standard deviation = 5.23}

22. Find the standard deviation for the following data: 3, 5, 6, 7, 10, 12, 15, 18.

{Standard deviation = 4.87}

{Standard deviation = 2.72}

23. Find out the standard deviation of the height of 10 men given below: 160, 160, 161, 162, 163, 163, 163, 164, 164, 170,

Discrete Series

24. Calculate standard deviation of the given below:

Size	3	4	5	6	7	8	9
Frequency	3	7	22	60	85	32	8

{Standard deviation = 1.149}

25. Find the value of standard deviation and coefficient of variation from the following:

Variables	10	20	30	40	50	60 70
Frequency	6	8	16	15	32	11 12

(Standard deviation = 16.43; Coefficient of SD = 3^{i}

26. Measurements are made to the nearest cm. of the heights of 10 children. Calculate mean and standard deviation deviation.

Height (cms)	60	61	62	62	04	05	66	67 6
Ale of the			UL	03	64	65	00	3
No. of children	2	0	15	29	25	12	10	4

(Mean = 63.89 cms; Standard deviation = 1.6

Measures of Dispersion

Continuous Series alculate standard deviation for the given data

27. Can	(in vrs)	20-25	25-30						
Ag No.	of workers	17	11	30-(8	35 35	-40 40)45	45-50	50-55
Cal	ulate Standard o	deviation f	rom the fo				4 Standa	3	2
8. Car	SS	0–10	10-20) 20-3	ries:			d deviation :	= 8.79 years}
Fre	quency	2	4	6	30	-40 40)50	50-60	6070
						8	6	4	2
9. Fror	n the following fig	gures, find	the stand	lard devia	ion and th	1e coefficie	(Sta	andard devia	ation = 15.81)
Ma	rks	0-10	10-20	20-30	00.45			mauon:	

Marks	0 10	10-20	20-30	30-40	40 50		1	
No of persons	5	10	20		40-00	50-60	60-70	70-80
No. of persone		10	20	40	30	20	10	4
and the second se		10	tandard de		-			

{Standard deviation = 15.69 marks; Coefficient of variation = 39.83%}

10.87

Combined Standard Deviation

31. The means of two samples of sizes 50 and 100 respectively are 54.1 and 50.3 and the standard deviations are 8 and 7. Find the mean and the standard deviation of the sample of size 150 obtained by combining the two samples.

{Combined Mean = 51.57: Combined Standard deviation = 7.56}

32. For a group of 100 males, mean and standard deviation of their daily wages are ₹ 36 and ₹ 9 respectively. For a group of 50 females, it is ₹ 45 and ₹ 6. Find the standard deviation for the whole group.

{Combined Mean = 39; Combined Standard deviation = 9.16}

Lorenz Curve X

33. The profit of two business concerns for 5 years are as given below. Draw Lorenz Curves to show the distribution.

			2003	2004	2005
Year	2001	2002	2000	60	50
Eirm A	15	30	45	60	45
Film A	10	20	45	60	45
Firm B	20			witho Lorenz	Curves for both

34. The given table shows the daily income of workers of two factories. Draw the Low

the factories.			000 900	300-400	400-500
Daily Income (₹)	0-100	100-200	5	3	2
Factory A	8	7	2	1	1
Factory B	15	0			

		Miscellaneous Questions	:	
35. Find u		and its coefficient for the given and	50	60
the mean d	eviation from n	20 30 4	0 15	5
Marks (more tha	n) 0	10 150 100 4	Uticient of Mean dev	viation = 0.39}
No. of students	200	180 mean = 11.5 marks; Coer	ficient -	

(Mean deviation from

10.88	1				Approximation of the providence of the second s	the follo	owing	distribut	ion.		Class XI	Measu	late coefficier	nt of variati	on from	he follow	oteb nai	and a second second		er i se anti-tara fillar e canada	tile atile - e - metalemin		.05
		oan and Sta	ndard	Deviation	1 from	(ne ione	oning					14. Ca	alculate and than)	0	10	20	ing Jaid						
6. (Calculate the M	eanane	10	20-24		25-29	,	30-34	3	35-39	40-41	44.	Marks (more than)	100	90	20	3	30	40	50	60	70	1
1000	Age (years)	15-1	19	20		38		24		10	4		Vo. of students			/5	5	50	20	10	5	0	
1	No. of Persons	4		20	ories i	into excl	lusive c	lass-inte	ervals al	nd, there	eafter, col	-								{Coeffic	ient of va	riation =	50%}
1		Hint:	Conve	ert above s	8/165 1	ine en			mean	and stan	idard device		Towns A and	B, daily p	ocket m	oney and	the star	idard d	deviation	s are nive	an helow		
						(Met	an = 28.	4 years;	Standar	d deviatio	On = 5.66	45. In	two rea	Averag	e Daily F	Pocket	S	tandar	d Devicti	s are give	Me of T	-	-
								Comput	a the cr	officien	U. Oo years)	7	Town		34.5			anuar	J Deviatio	n	NO. OT I	eenayer	
		he gives the	weigh	nts of one	hund	red per	sons. C	Joinput		Semicien	t of dispersion	1	A		28.5				5.0			=04	
7. 1	The following ta	f limits										Ī	В						4.5			524	
b	y the method o	I INTINGS		50-55	55-6	60-	-65 65	-70 70	0-75 7	75-80 8	30-85 85-90		(i) Which town,	A or B, pa	ays out tr	ie larger a	amount	of daily	y pocket	money?			
	Class-interval	40-45	45-5	0 50-50	14	9		16	17	9	8 2		(ii) What is the	average d	ally pock	et money	of all te	enage	ers taken	together	?		
	No. of persons	4	13	0			(Ba	nae = 50	kg. Coe	efficient o	of range - 0.00 m		(iii) Calculate co	efficientor	variation	of each to	wn.Whic	ch towr	1 is more	variable in	terms of	pocket	noney:
-							1				.90 - 0.384	1.1.1.1	(i) Pocket Mone	y: Iown A =	ed Pocket	; IOWN B = Money =	₹14,93 ₹31.36	4. Iown (iii) C.V	1 A pays la	arger amo	Lint of dall	wn B) =	15.79%
		and doviation	of the	following	j data:	:										Town B is	s more v	ariable	in terms (of pocket r	noney as	its C.V. is	higher
3. C	alculate standa	ard deviation			20	40		50	60	70	0 80	11.155			V		V		van hala	w Stata	which co	moany	is mor
	Age in years (bel	ow) 10		20	50	75		100	110	11	5 125	46 1	The prices of sha	re of Com	pany X a	and Com	pany Y	are giv	ven belo	W. State,	WINCH OC	,p	
	No. of persons	15		30	53	13	and t	horeafte	r calcu	late star	ndard deviation	40.	stable?								40	24	60
		Hint: Ma	ke abo	ove series	as cor	ntinuous	s anu, u	liereand	ir, ourou	I doviatio			Company X	25	50	45	30	70	42	36	48	49	80
								{5	tandard	deviatio	T = T9.76 years		Company	10	70	50	20	95	55	42	60	40	45.94
_		ular item in 1	0 vea	rs in two o	ities a	ire give	n belov	<i>v</i> , which	n city ha	as more	stable prices?		Company	{C.	V. of Price	es of Shar	e of X Co	0. = 29.	72%; C.V.	. of Prices Prices of S	of Snare hare of X	Co. is mo	ire stab
). P	nce of a particul				0	56	58	52	5	50	51 49	10000								No. and A	a 40 an(15 1 res	pectiv
	City A	55 54		52 5	3	106	107	10	1 1	03	104 101	10.799	A student obtaine	ed the mea	an and s	tandard	deviatio	n of 10	JO obser	vations a	AO Find	the cor	rect me
-	City B	108 107	1	05 10)5	106	107		V. City F	2 has mo	re stable prices	47.	A student obtained	that one of	bservat	ion was v	vrongly	copied	1 as 50 ii	Islead of	40.1 ///		
			(C.V. (City A	4) = 4.9)9%; CV	(City B) = 1.90	%; City E	5 1185 1110	i C Stabio priccoj		and standard dev	viation.					Correl	ct Mean =	39.9; Sta	ndard de	viation
_	the state of the	the coefficient	ient of	variation	is 22.	5% and	d mean	is 7.5.	Calcula	ate stand	dard deviation.		and standard as						loonee			hich are	unisr
). F	or a distribution	i, the coefficience	ient of	- Canada - C					(SI	tandard o	deviation = 1.69)			- data or	loulates	standard	deviatio	on of th	ne two g	roups A a	ING D. W	nich gre	up is i
									10			48.	From the following	ig data, ca	liculato							-	
F	ind out the arith	metic mean	and s	tandard o	leviation	on from	n the fo	llowing	data:				consistent?	and the second secon			Gro	UD A			G	roup B	
_				10.15		15 20		20-25	2	25-30	30-35		Class-	Interval		Service Services	Gire	2				9	
	Variable	5-10)	10-15		15-20		EA	_	11	5		5-	10				0				11	
F	Frequency	2		9		29		54			domination = 4.88		10-	-15				9				18	
	96 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 1					{Arith	hmetic n	nean = 2	1.05; St	tandard d	Jeviation			00				29				32	
-	he mean and a	andard davi	ation	of a corio	s of 20) items	are 20	and 5 r	especti	ively. Wł	hile calculating		15-	-20				54				27	
	ne mean and si		12	a series	V root	1 20 20) Find	out the	correc	t mean	and standard		20-	-25				11				13	
th	ese measures	, an item of	10 Wa	as wrongi	y read	1 as 30	, Find		001100				25-	-30				5			10	A /23 18	%) is le
d	eviation.										daviation = 4.66		30-	-35			up A is	more	consister	nt as C.V.	of Group	V. of Grou	IP B (32
						{C	correct N	Aean = 1	9.15; St	tandard (Jevianon			$\{\sigma_A = e$	4.88; σ _B =	= 7.07; Gr	oup A is				0.1		
	lowing are the	marks obta	ined h	w two etu	dante:	Mollio	and let	ha in 1) sets (of exami	inations:			(-A					doviatio	on, What	will be	the valu	e or st
	siloning are the	mains obla		y two stu	u sints.	MOILE	and Ist	ia, in h	00000		60 54	40	Ere		at mark	s calcul	ate sta	ndard	ueviaire	ne?			
٨	Marks of obtaine	d by Mollie	44	80	76	48	52	72	68	56	60 66	19.	rom the follow	ing data	of mark	ach stud	lent is i	ncreas	sea by o	6	17		8
٨	Aarks of obtaine	d by Isha	48	75	54	60	62	60	72	51	57 00		deviation, if ma	rks obtair	ed by e	acriticitate	-	4	5	0		E	17

-

Z

Marks Obtained

No. of students

Marks of obtained by Mollie Marks of obtained by Isha

Out of Mollie and Isha, who is more consistent?

42.

43.

(Isha is more consistent in securing the marks as her C.V(14.01%) is less than that of Mollie's C.V. (19, 18%)

Hint: Standard deviation is independent of the change of origin, i.e. it is not affected if each value to increased or decreased by a constant quantity. So, the standard decreased by a constant quantity. andard deviation is independent of the change of any quantity. So, the standard deviation of the series is increased or decreased by a constant quantity. So, the standard deviation of the series is increased in the same even if marks of each student is increased in the same even if marks of each student is increased in the series is increased creased or decreased by a constraint of each student is increased by a constraint of each student is increased by a constraint will remain the same even if marks of each student is increased by one (Standard deviation = 1.22). {Standard deviation = 1.7741 marks]

50. From the following data of two workers, identify who is a more consistent worker?

	Work	er
Average Time in completion it is	A	
Standard Davistic	40	8
Standard Deviation	8	42

(Worker B is more consistent as his C.V. (14.29%) is less than that of worker A (20%)

51. Find the standard deviation and coefficient of standard deviation:

X (less than)	10	00		1				
- (recentionly	10	20	30	40	50	60	70	
Frequency	12	20	CE	407		00	70	80
	12	30	60	107	157	202	222	
				-			666	230

Standard deviation = 17.26; Coefficient of Standard deviation = 0.43

52. Find mean, standard deviation and coefficient of variation.

Class-interval	0.4	10				
	0-4	4-8	8-12	12-16	16-20	20-24
Frequency	10	15	20	05		20-24
and the second se		10	20	25	20	10

{Mean = 12.4; Standard deviation = 5.85; C.V. = 47.19%]

53. The following table shows the marks obtained by 60 students. Calculate mean and standard deviation.

-					
70	60	50	40	30	20
-				00	20
7	18	40	40	55	60
	70 7	70 60 7 18	70 60 50 7 18 40	70 60 50 40 7 18 40 40	70 60 50 40 30 7 18 40 40 55

Hint: First, convert the given series as ordinary continuous series and then use the step deviation method.

{Mean = 51.67 marks; Standard deviation = 15.13 marks}

54. Calculate standard deviation and coefficient of dispersion from the data below:

Mid-Points	5	15	25	35	45	55	65	75
Frequency	5	8	7	12	28	20	10	10

Hint: For coefficient of dispersion, calculate coefficient of variation as it is a better measure in comparison to coefficient of standard deviation.

(Standard deviation = 18.49; C.V. = 41.09%)

55. The following data shows the expected life of two models of T.V.: A and B:

Life (No. of years)	0-2	2-4	4-6	6-8	8-10	10
Model A	5	16	13	7	5	
Model B	2	7	10	10	0	-

Which modal has greater uniformity?

(C.V. of Model A = 54.91%; C.V. of Model B = 36.21%. Model B has greater uniformity

LEARNING OBJECTIVES

- 11.1 INTRODUCTION
- 11.2 CORRELATION AND CAUSATION
- 11.3 IMPORTANCE OR SIGNIFICANCE OF CORRELATION
- 11.4 TYPES OF CORRELATION
- 11.5 DEGREE OF CORRELATION
- 11.6 METHODS OF MEASUREMENTS OF CORRELATION
- 11.7 SCATTER DIAGRAM
- KARL PEARSON'S COEFFICIENT OF CORRELATION 11.8
- 11.9 CALCULATION OF KARL PEARSON'S COEFFICIENT OF CORRELATION

MEASURES OF CORRELATION

- 11.10 ASSUMPTIONS OF COEFFICIENT OF CORRELATION
- 11.11 PROPERTIES OF COEFFICIENT OF CORRELATION
- 11.12 MERITS AND DEMERITS OF COEFFICIENT OF CORRELATION
- 11.13 SPEARMAN'S RANK CORRELATION
- 11.14 COMPUTATION OF RANK CORRELATION
- 11.15 MERITS AND DEMERITS OF RANK CORRELATION

11.1 INTRODUCTION

In the earlier chapters, we have studied the statistical problems and distributions relating to One variable. We discussed various measures of central tendency and dispersion, which are confined to a single variable. This kind of statistical analysis involving one variable is known But, we may come across a number of situations with distributions having two variables. For example, price and demand, height and as univariate distribution. example, we may have data relating to income and expenditure, price and demand, height and weight of the may have data relating to income and expenditure is called *bivariate distribution*. Weight, etc. The distribution involving two variables is called is called *bivariate distribution*. In a **bivariate** distribution involving two variables is called if there is any relationship between the $\frac{1}{W_0}$ variable distribution, we may be interested to find if there exists certain relationship two variables under study. In day-to-day life, we observe that there exists certain relationship between two between two variables, like between income and expenditure, price and demand and so on Correlationship between two variables. Correlation is a statistical tool which studies the relationship between two variables.