$$
\left(\bar{X}_{X, Y}\right)=\frac{(500 \times 186)+(600 \times 175)}{500+600}=\frac{1,98,000}{1,100}=₹ 180
$$

(ii) Income of village $\mathrm{X}=500 \times 186=₹ 93,000$

Income of village $Y=600 \times 175=₹ 1,05,000$
Thus, Village Y has a larger income.
(iii) Coefficient of Variation of Village $X(C . V . x)=\frac{\sigma}{\bar{X}_{x}} \times 100=\frac{9}{186} \times 100=4.84 \%$ Coefficient of Variation of Village $Y($ C.V.Y $)=\frac{\sigma}{\bar{X}_{y}} \times 100=\frac{10}{175} \times 100=5.71 \%$
There is more variability in Village Y .
Ans. (i) Average income of the village X and Y taken together $=₹ 180$;
(ii) Village Y has a larger income;
(iii) In village Y , variation in income is greater.

Example 48. For a group of 200 candidates, the mean and standard deviation were found to be 40 and 15 . Later on it was discovered that the score 43 was misread as 53 . Find the correct mean and standard deviations corresponding to the corrected figure.

Solution:
Calculation of Correct Mean
$\bar{X}=\frac{\Sigma X}{N}$
Or, $\Sigma X=\bar{X} N$
$\bar{X}=40 ; N=200$
$\Sigma X=40 \times 200=8,000$
But 8,000 is a wrong value as one score was misread as 53 instead of 43
Correct $\Sigma X=8,000$ - incorrect item + correct item $=8,000-53+43=7,990$
Correct $\bar{X}=\frac{\Sigma X}{N}=\frac{7,990}{200}=39.95$
Calculation of Correct Standard deviation
$\sigma=\sqrt{\frac{\Sigma X^{2}}{N}-(\bar{X})^{2}}$
$15=\sqrt{\frac{\Sigma X^{2}}{200}-(40)^{2}}$
$15=\sqrt{\frac{\Sigma \mathrm{X}^{2}}{200}-1,600}$
Squaring both the sides

Measures of Dispersion

$$
225=\frac{\Sigma X^{2}}{200}-1,600
$$

$$
225 \times 200=\Sigma X^{2}-1,600 \times 200
$$

$$
\begin{aligned}
& 225 \times 200=2 N \\
& \Sigma X^{2}=3,20,000+45,000=3,65,000
\end{aligned}
$$

But, it is incorrect value
Correct $\Sigma X^{2}=$ Incorrect $\Sigma X^{2}-(\text { Incorrect items })^{2}+(\text { Correct items })^{2}$
correct $\Sigma X^{2}=3,65,000-(53)^{2}+(43)^{2}=3,65,000-2,809+1,849=3,64,040$
$\operatorname{correct} \sigma=\sqrt{\frac{\text { Correct } \Sigma X^{2}}{N}-(\text { Correct } \bar{X})^{2}}$
$\operatorname{Correct}(\sigma)=\sqrt{\frac{3,64,040}{200}-(39.95)^{2}}=\sqrt{1,820.2-1,596}=\sqrt{224.2}=14.97$
Ans. Correct Mean $=39.95$ marks; Correct Standard Deviation $=14.97$ marks
Exanple 49. Calculate variance and coefficient of variation from the following data:
Exanple 49. Calculate variance and coefficient of variation from the following data:

Values	2	6	10	14
Frequency	4	8	2	1

Solution:

Solution:					
Values (X)	Frequency (f)	$f X$	$x=X-\bar{X}$	x^{2}	$f x^{2}$
2	4	8	-4	16	64
6	8	48	0	0	0
10	2	20	+4	16	32
14	1	14	+8	64	64
	$\mathbf{N}=\mathbf{\Sigma f = 1 5}$	$\mathbf{\Sigma f} \mathbf{X}=90$			$\mathbf{\Sigma f x ^ { 2 } = 1 6 0}$

Arithmetic Mean $(\overline{\mathrm{X}})=\frac{\Sigma \mathrm{fX}}{\Sigma \mathrm{f}}=\frac{90}{15}=6$
$(\sigma)=\sqrt{\frac{\Sigma x^{2}}{N}}=\sqrt{\frac{160}{15}}=3.2659$
Variance $=\sigma^{2}=(3.2659)^{2}=10.66$
Coefficient of Variation $=\frac{\sigma}{\bar{X}} \times 100=\frac{3.2659}{6} \times 100=54.43 \%$
Ans. Variance $=10.66 ;$ Coefficient of Variation $=54.43 \%$
 (iii) Coefficient of Standard Deviation; (iv) Coefficient of Variation.

Class	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$
Frequency	4	5	6	2	3

Solution:
This is a case of inclusive class-intervals. So, it has to be converted into exclusive series

Marks (x)	No. of students (i)	Mid-point (m)	$\begin{aligned} & d=m-A \\ & (A=24.5) \end{aligned}$	$\begin{gathered} d^{\prime}=\frac{m-A}{C} \\ C=10 \end{gathered}$	$f d^{\prime}$	
9.5-19.5	4	14.5	-10	-1	-4	
19.5-29.5	5	24.5 (A)	0	0	0	
29.5-39.5	6	34.5	$+10$	+1	+6	0
39.5-49.5	2	44.5	+20	+2	+ 4	
49.5-59.5	3	54.5	+30	+ +	+4 +9	4
	$\mathbf{N}=\mathbf{\Sigma f}=\mathbf{2 0}$				$\frac{+9}{\Sigma f l d^{\prime}=15}$	9

$$
\Sigma \mathrm{fd}^{\prime 2}=45 ; N=20 ; \Sigma \mathrm{fd}^{\prime}=15 ; C=10
$$

$$
\sigma=\sqrt{\frac{45}{20}-\left(\frac{15}{20}\right)^{2}} \times 10=\sqrt{2.25-.5625} \times 10=\sqrt{1.6875} \times 10=12.99
$$

(ii) Variance $=\sigma^{2}=(12.99)^{2}=168.74$
(iii) We know: Coefficient of Standard Deviation $=\frac{\sigma}{\bar{X}}$

Mean $(\bar{X})=A+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma f} \times C=24.5+\frac{15}{20} \times 10=32$
Coefficient of Standard Deviation $=\frac{12.99}{32}=0.406$
(iv) Coefficient of Variation (C.V.) $=\frac{\sigma}{\bar{X}} \times 100=\frac{12.99}{32} \times 100=40.6 \%$
(iv) Coefficient of Variation $=\mathbf{1 2 . 9} \%$.
8.74; (iii) Coefficient of Standard Deviation $=0.406$;

Age Group (years)	Group A	No. of Persons
	5	Group B
$0-10$	15	7
$10-20$	20	12
$20-30$	25	22
$30-40$	18	30
$40-50$	10	20
$50-60$	7	5
$60-70$		4

solution:
In order to find
two groups.
Calculation of Coeffice compare the coefficient of variation (C.V.) of

To calculate coefficient of variation, we will first calculate standard deviation and arithmetic mean.
$\sigma=\sqrt{\frac{\Sigma \mathrm{fd}^{\prime 2}}{\mathrm{~N}}-\left(\frac{\Sigma \mathrm{fd}^{\prime}}{\mathrm{N}}\right)^{2}} \times \mathrm{C}=\sqrt{\frac{334}{100}-\left(\frac{94}{100}\right)^{2}} \times 10$
$\sigma=\sqrt{3.34-0.883} \times 10=15.67$
Mean $(\bar{X})=A+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma f} \times C=25+\frac{94}{100} \times 10=34.4$
Coefficients of Variation (C.V.) $=\frac{\sigma}{\bar{X}} \times 100=\frac{15.67}{34.4} \times 100=45.55 \%$
Calculation of Coefficient of Variation (Group B)

Calculation of Coefficient of Variation (Group B)							
(X)	No. of persons (f)	Mid-points (m)	$\begin{aligned} & d=m-A \\ & (A=25) \end{aligned}$	$\begin{aligned} d^{\prime} & =\frac{m-A}{C} \\ C & =10 \end{aligned}$	$f d^{\prime}$	d^{12}	$f d^{\prime 2}$
0-10	7	5	-20	-2	-14	4	28
10-20	12	15	-10	-1	-12	1	12
	22	25 (A)	0	0	0	0	0
	30	35	$+10$	+1	$+30$	1	30
50-6	20	45	$+20$	+2	+ 40	4	80
	5	55	+30	+ 3	+15	9	45
	4	65	+40	+4	+16	16	64
	$N=\Sigma \mathbf{f}=100$				$\Sigma \mathrm{Ifd}^{\prime}=75$		$\Sigma \mathrm{fd}^{\prime 2}=259$

To calculate coefficient of variation, we will first calculate standard deviation and arithmetic mean.

$\sigma=\sqrt{2.59-0.5625} \times 10=14.24$
Mean $(\bar{X})=A+\frac{\Sigma \mathrm{fd}^{\prime}}{\Sigma f} \times C=25+\frac{75}{100} \times 10=32.5$
Coefficient of Variation (C.V.) $=\frac{\sigma}{\bar{X}} \times 100=\frac{14.24}{32.5} \times 100=43.82 \%$
Ans. Coefficient of variation of Group B (43.82\%) is less than that of Group A (45.55\%), so Group Bis more uniform.

10.22 PROPERTIES OF STANDARD DEVIATION

1. The sum of the square of the deviations of the items from their arithmetic mean is the minimum. The sum is less than the sum of the square of the deviations of the items from any other value.
It is made clear with the following illustration:

X	$X-\bar{X}$ $\bar{X}=7$	$(X-\bar{X})^{2}$	$X-8$	$(X-8)^{2}$
3	-4	16	-5	25
5	-2	4	-3	9
8	+1	1	0	0
12	+5	25	+4	16
		$\Sigma(X-\bar{X})^{2}=46$		$\Sigma(X-8)^{2}=50$

It is clear from the above example that sum of the squares of deviations from mean (46) is less than the sum of squares of deviations (50) taken from assumed mean.
2. Standard deviation is independent of change of origin, i.e. value of standard deviation remains the same if in a series, a constant is added (or subtracted) to all observations.
3. Standard deviation is affected by change of scale, i.e. if all the observations are multiplied or divided by a constant, then the standard deviation also gets multiplied (or divided) by this constant.
4. Standard deviation of the combined series: Like the arithmetic mean, it is possible to compute combined standard deviations of two or more groups.
\{Combined Standard Deviation is discussed in detail in Section 10.23 \}
5. For a given set of observations, standard deviation is never less than mean deviation from mean, i.e., Standard Deviation > Mean Deviation from mean.
es of Dispersion
0.23 COMBINED STANDARD DEVIATION
${ }_{A S}$ we can calculate mean of two or more than two series, we can also compute combined ${ }_{51 \text { tan }}{ }^{2}$ dard deviation of two or more than two series. The formula in case of two series:

$$
\sigma_{1,2}=\sqrt{\frac{N_{1} \sigma_{1}^{2}+N_{2} \sigma_{2}^{2}+N_{1} d_{1}^{2}+N_{2} d_{2}^{2}}{N_{1}+N_{2}}}
$$

Where
$\sigma_{1,2}=$ Combined standard deviation of two groups
$\sigma_{1}=$ Standard deviation of first group
$\sigma_{2}=$ Standard deviation of second group
$\mathrm{d}_{1}^{2}=\left(\bar{X}_{1}-\bar{X}_{1,2}\right)^{2}$
$\mathrm{d}_{2}^{2}=\left(\bar{X}_{2}-\bar{X}_{1,2}\right)^{2}$
$\bar{X}_{1,2}=$ Combined arithmetic mean of two groups
$\bar{X}_{1}=$ Arithmetic mean of first group
$\bar{X}_{2}=$ Arithmetic mean of second group
$\mathrm{N}_{1}=$ Number of observations of first group
$\mathrm{N}_{2}=$ Number of observations of second group
This formula can be extended upto N number of series. If there are three series, then the combined standard deviation is:

$$
\sigma_{1,2,3}=\sqrt{\frac{N_{1} \sigma_{1}^{2}+N_{2} \sigma_{2}^{2}+N_{3} \sigma_{3}^{2}+N_{1} d_{1}^{2}+N_{2} d_{2}^{2}+N_{3} d_{3}^{2}}{N_{1}+N_{2}+N_{3}}}
$$

Where,

$$
d_{1}^{2}=\left(\bar{X}_{1}-\bar{X}_{1,2,3}\right)^{2}, d_{2}^{2}=\left(\bar{X}_{2}-\bar{X}_{1,2,3}\right)^{2}, \text { and } d_{3}^{2}=\left(\bar{X}_{3}-\bar{X}_{1,2,3}\right)^{2}
$$

The concept of combined mean will be more clear from the following examples.

Example 52. Find the combined standard deviation from the following data:
Example 52. Find the combined standard deviation from the following data.

	Boys	Girls
Number	30	20
Mean	20	30
Standard deviation	4	5

Solution:
To Calculate combined standard deviation, we will have to first calculate combined mean:

$$
\begin{aligned}
& \text { Combined Mean }\left(\bar{X}_{1,2}\right)=\frac{N_{1} \bar{X}_{1}+N_{2} \bar{X}_{2}}{N_{1}+N_{2}} \\
& \bar{X}_{1}=20, \bar{X}_{2}=30, N_{1}=30, N_{2}=20
\end{aligned}
$$

$$
\bar{x}_{1,2}=\frac{(30 \times 20)+(20 \times 30)}{30+20}=\frac{1,200}{50}=24
$$

Calculation of Combined Standard Deviation

$$
\begin{aligned}
& \sigma_{1,2}=\sqrt{\frac{N_{1} \sigma_{1}^{2}+N_{2} \sigma_{2}^{2}+N_{1} d_{1}^{2}+N_{2} d_{2}^{2}}{N_{1}+N_{2}}} \\
& d_{1}=\bar{x}_{1}-\bar{x}_{1,2}=20-24=-4 \\
& d_{2}=\bar{x}_{2}-\bar{x}_{1,2}=30-24=6 \\
& \text { Now: } N_{1}=30, \sigma_{1}=4, N_{2}=20, \sigma_{2}=5, d_{1}=-4, d_{2}=6 \\
& \sigma_{1,2}=\sqrt{\frac{30(4)^{2}+20(5)^{2}+30(-4)^{2}+20(6)^{2}}{30+20}} \\
& \sigma_{1,2}=\sqrt{\frac{480+500+480+720}{50}}=\sqrt{43.6}=6.6
\end{aligned}
$$

Ans. Combined Standard Deviation $=6.6$
Example 53. Mean and standard deviations of two distributions of 100 and 150 items are 50,5 and 40,6 respectively. Find the standard deviation of all the 250 items taken together:

Solution:

First we will calculate combined mean:
Combined Mean $\left(\bar{X}_{1,2}\right)=\frac{N_{1} \bar{X}_{1}+N_{2} \bar{X}_{2}}{N_{1}+N_{2}}$
$\bar{X}_{1}=50, \bar{X}_{2}=40, N_{1}=100, N_{2}=150$
$\bar{X}_{1,2}=\frac{(100 \times 50)+(150 \times 40)}{100+150}=\frac{11,000}{250}=44$
Calculation of Combined Standard Deviation
$\sigma_{1,2}=\sqrt{\frac{N_{1} \sigma_{1}^{2}+N_{2} \sigma_{2}^{2}+N_{1} d_{1}^{2}+N_{2} d_{2}^{2}}{N_{1}+N_{2}}}$
$d_{1}=\bar{x}_{1}-\bar{x}_{1,2}=50-44=6$
$d_{2}=\bar{x}_{2}-\bar{x}_{1,2}=40-44=-4$
Now: $N_{1}=100, \sigma_{1}=5, N_{2}=150, \sigma_{2}=6, d_{1}=6, d_{2}=-4$
$\sigma_{1,2}=\sqrt{\frac{100(5)^{2}+150(6)^{2}+100(6)^{2}+150(-4)^{2}}{100+150}}$
$\sigma_{1,2}=\sqrt{\frac{2,500+5,400+3,600+2,400}{250}}=\sqrt{55.6}=7.456$
Ans. Combined Standard Deviation $=7.456$

Merits of Standard Deviation

1. Based on all Values: Standard deviation considers every item of the series. So, a change in even one value affects the value of standard deviation.
2. Rigidly Defined: Standard deviation is by far the most important and widely used measure of dispersion. It is rigidly defined, i.e. it is a definite measure of dispersion
3. Less effect of fluctuations in sampling: If several independent samples are drawn from the same population, it may be observed that standard deviation is least affected from sample to sample as compared with other measures of dispersions.
4. Algebraic Treatment: Standard Deviation is capable of further algebraic treatment. For example, if standard deviations of a number of groups are known, their combined standard deviation can be computed.
5. Better mathematical process: The squaring of the deviations removes the drawback of ignoring the signs of deviations (as done in case of mean deviation).
Demerits of Standard Deviation
6. Difficult to Compute: Standard deviation is more difficult to be measured as compared to other measures of dispersion.
7. More stress on extreme items: It gives more weightage to extreme values and less to those which are nearer to mean
8. Depend upon units of measurement: It depends upon the units of measurement of the observations. So, it cannot be used to compare the dispersion of the distributions expressed in different units.
Uses of Standard Deviation
9. Standard deviation can be used to compare the dispersions of two or more distributions when their units of measurements and arithmetic means are same.
10. It is used to test the reliability of mean. Mean of a distribution with least standard deviation is said to be more reliable.

10.25 CHOICE OF A SUITABLE MEASURE OF DISPERSION

\qquad
We have already studied the merits and demerits of the four measures of dispersion namely range, quartile deviation, mean deviation and standard deviation. Let us now make a comparative study of all the four measures. It would help in the selection of an appropriate measure of dispersion
${ }^{\text {ror a }}$ a particular problem under study:

1. Rigidly defined: All the four measures of dispersion are rigidly defined and their values are definite.
mean deviation and standard deviation are a little more complicated.
2. Based on values: The range and quartile deviation do not depend on all values, where mean deviation and standard deviations are based on all values.
3. Algebraic Treatment: In terms of algebraic treatment, standard deviation is considered be the best measure of dispersion.

Conclusion

1. Range: It is the simplest to calculate, but it is an unstable measure as it is considerably affected by the extreme values. This method is advisable only when the variation in the size of items is verv little.

2 Quartile deviation: The quartile deviation is a better measure than range as it is not affected too much by the values of extreme items. It is easily calculated and is readily understood However, quartile deviation has no algebraic properties and its interpretation is difficult
3. Mean Deviation: Mean deviation is based on all the items, but it ignores the signs of deviation and cannot be used for further algebraic treatment.
4. Standard deviation Standard deviation is rigidly defined and is based on all the observations. It is capable of algebraic treatment and is not affected very much by fluctuations of sampling. So, the standard deviation scores over all other measures of dispersion.
However, it should be kept in mind that standard deviation gives comparatively greater importance to extreme variations, which should usually be ignored

Comparison Between Mean Deviation and Standard Deviation

S. Na.	Mean Deviation	Standard Deviation		
1. is based on simple average of the sum of				
absolute deviations			\quad	It is based on the square root of the average of the
:---				
squared deviations.				

	is the difference	It is half the difference	Mean Deviation	Standard Deviation
ion	between the largest and the smallest item of a series. It is easiest to cal-	between the third and the first quartile.	It is the arithmetic mean of the deviation of all the values taken from an average.	It is the square root of the arithmetic mean of the squares of deviation of iterns from their arithmetic mean
culation	culate and simple to understand.	and simple to understand.	It is difficult to calculate as compared to range and quartile deviation, but it is simple to understand.	It involves difficult calculations.
Based on items	It is based on only two items of the series, the largest and the smallest.	It covers only 50\% items.	It is based on all the items of the series.	It is based on all the items of the series.
EHect of Extreme ltems	It is highly affected by the extreme values.	It is notunduly affected by extreme values.	It is less affected by extreme values.	It is affected by extreme values.

10.26 LORENZ CURVE X

The Lorenz Curve is a graphic method of studying dispersion. It was devised by Dr. Max O. Lorenz, a famous economics statistician. This curve was used by him to measure the inequalities of income or wealth of a society.
Now a days, the curve is also used to study the distribution of profit, wages, turnover, etc. However, still the most common use of this curve is to show inequality of income or wealth in a country.

Steps involved in Drawing a Lorenz Curve
Step 1. Calculate cumulative values of size of items (in case of discrete series) or mid-points (in case of continuous series).
Step 2. Calculate percentages for these cumulative values. For this, the last cumulative total is considered as equal to 100 and then percentages are obtainted.
Step 3. Determine cumulative frequencies.
Step 4. Calculate the percentage for each cumulative frequency. For this, the last cumulative lotal is considered as equal to 100 and then percentages are obtained.
${ }^{\text {step }} 5$, On the X -axis, start from 0 to 100 and take the percentage of cumulative trequencies.
${ }^{\text {step }} 6$. On the Y -axis, start from 0 to 100 and take the percentage of variable.
"tep 7. Draw a diagonal line joining oto to0. This line is known as "Lime of Equal Distribution"
or "Equality line".

Step 8. Plot the various points corresponding to the values of the variables X and Y and the join these points with a smooth free hand curve. The curve so obtained shows the acturd distribution. This curve is known as Lorenz Curve.

Important Points of Interpretation of Lorenz Curve

- If the distribution is uniform, the Lorenz Curve will coincide with the line of equad distribution. Generally, the Lorenz curve lies below the line of equal distribution
- The area between the line of equal distribution and the Lorenz curve gives the extent inequality in the items. The larger the area, more is the inequality.
- If curves of various distributions are shown on the same Lorenz presentation, the curve that is farthest from the diagonal line represents greatest inequality.
The following example will help us in understanding this phenomenon.
Example 54. From the following details of monthly income, draw a Lorenz curve.

Income (in '000 ₹)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of persons	4	5	7	5	4

Solution:

Monthly Income (र)	Mid-Value (र)	Cumulative Mid-values	\% Cumulative Mid-values	No. of Persons (f)	Cumulative Frequency (c.f.)	\% Cumulative Frequency
$0-10$	5	5	4	4	4	16
$10-20$	15	20	16	5	9	36
$20-30$	25	45	36	7	16	64
$30-40$	35	80	64	5	21	84
$40-50$	45	125	100	4	25	100

Percentage of Persons
The curve drawn is farther from the line of equal distribution. So, there is inequality in distribution of income.

Example 55. From the following table, draw Lorenz curve for number of persons in Group A $\mathrm{d} B$ and interpret the result.					
and ${ }^{\text {a }}$ Earned (₹ in 000)	20	30			
profit Eamed (Persons (Group A)	6	8	40	50	60
	15	8	10	12	14
	15	10	9	11	5

Solution:

Profit Eamed (Fin'000)	Cumulative Profit (₹)	Cumulative (\%)		Group A No. of Persons	Cumulative No.	Cumulative $(\%)$	No. of Persons	Cumulative No.
20	20	10	6	6	12	15	15	30
30	50	25	8	14	28	10	25	50
40	90	45	10	24	48	9	34	68
50	140	70	12	36	72	11	45	90
60	200	100	14	50	100	5	50	100

The Lorenz curve of Group B is farthest from the line of equal distribution. So, Group B shows greater inequality as compared to Group A.

10.27 MERITS AND DEMERITS OF LORENZ CURVE

Merits of Lorenz Curve

1. Lorenz Curve is attractive and it gives a rough iden of extent of dispersion.
2. With the help of Lorenz curve, it becomes easy to compare two or more series.

Demerits of Lorenz Curve

1. Lorenz curve gives only a relative idea of the dispersion as compared with the line of equal
2. The

The method of drawing Lorenz Curve is very difficult.

4. From the following data calculate range and coefficient of range.
(Coefficient of Quartile Deviation $=0.24$)
13. Estimate an appropriate measure of dispersion for the following data:

Wages (₹)	Less than 25	$25-30$	$30-35$	$35-40$	Above 40
No. of workers	2	10	26	16	7

Hint: It is an open-end series. So, it will be appropriate to find out quartile deviation and its coefficient.
\{Quartile Deviation = ₹3.40; Coefficient of Quartile Deviation $=0.1\}$

Mean Deviation .

Individual Series
14. Calculate the mean deviation from median and its coefficient from the following data: 100, 150, 80 , 90, 160, 200, 140
\{Mean deviation from Median $=34.28 ;$ Coefficient of Mean deviation $=0.245$ \}
15. Compute Mean deviation and its coefficient by mean from the data given below:

Discrete Series

16. Following are the marks of the students. Find mean deviation and coefficient mean deviation from

17. Find out the mean deviation from the median and its coefficient.

Find out the mean deviation from the median and
Marks

Scores of 50 college students:

Scores	$140-150$	$150-160$	$160-170$	$170-180$	$180-190$	$190-200$
Frequency	4	6	10	18	9	3

19. Find the mean deviation from mean and its coefficient for the given data:

\boldsymbol{X}	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
\boldsymbol{F}	3	5	7	2	9	4

20. Calculate mean deviation and its coefficient from the following figures: \quad Mean deviation $=0.44$

Class-Interval	Frequency
Less than 10	5
Less than 20	12
Less than 30	20
Less than 40	35
Less than 50	54
Less than 60	60

Hint: Mean deviation is calculated from median as it is a constant and representative value. [Mean deviation from median $=11.61 ;$ Coefficient of Mean deviation $=0.32$;

Standard Deviation
Individual Series
21. Calculate the standard deviation from the following values: $8,9,15,23,5,11,19,8,10,12$.
\{Standard deviation = 5.23\}
22. Find the standard deviation for the following data: $3,5,6,7,10,12,15,18$.
\{Stanciard deviation $=4.87$ \}
23. Find out the standard deviation of the height of 10 men given below: $160,160,161,162,163,163$, 163, 164, 164, 170.
(Standard deviation $=2.72$ \}
Discrete Series
24. Calculate standard deviation of the given below:

Size	3	4	5	6	7	8	9
Frequency	3	7	22	60	85	32	8

\{Standard deviation $=1.149$ \}
25. Find the value of standard deviation and coefficient of variation from the following:

Variables	10	20	30	40	50	60	70
Frequency	6	8	16	15	32	11	12
(Standard deviation $=16.43$; Coefficient of $S D=37,34$)							

26. Measurements are made to the nearest cm . of the heights of 10 children. Calculate mean and standard deviation.

Height (cms)	60	61	62	63	64	65	66	67	68
No. of children	2	0	15	29	25	12	10	4	3
Mean $=63.89 \mathrm{cms} ;$ Standard deviation $=1.6 \mathrm{cms}^{(4)}$									

29. From the following figures, find the standard deviation and the coefficient of variation:

| Marks | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of persons | 5 | 10 | 20 | 40 | 30 | 20 | 10 | 4 |
| \{Standard deviation $=15.69$ marks; Coefficient of variation $=39.83 \%$ \} | | | | | | | | |

Combined Standard Deviation
31. The means of two samples of sizes 50 and 100 respectively are 54.1 and 50.3 and the standard deviations are 8 and 7 . Find the mean and the standard deviation of the sample of size 150 obtained by combining the two samples.
\{Combined Mean $=51.57$; Combined Standard deviation $=7.56$ \}
32. For a group of 100 males, mean and standard deviation of their daily wages are $₹ 36$ and $₹ 9$ respectively. For a group of 50 females, it is ₹ 45 and $₹ 6$. Find the standard deviation for the whole group.
\{Combined Mean = 39; Combined Standard deviation $=9.16$ \} Lorenz Curve X
33. The profit of two business concerns for 5 years are as given below. Draw Lorenz Curves to show the distribution.

Year	2001	2002	2003	2004	2005
Firm A	15	30	45	60	50
Firm B	20	30	45	60	45

34. The given table shows the daily income of workers of two factories. Draw the Lorenz Curves for both
the factories.

Daily Income (₹)	$0-100$	$100-200$	$200-300$	$300-400$	$400-500$
Factory A	8	7	5	3	2
Factory B	15	6	2	1	1

35. Find the mean deviation from mean and its coefficient for the given data:

40	50	60
40	15	5

Find the m					40	50	
Marts (more deviatir		10	20	30	40	15	5
Marks (more than)	0	10	150	100	40		=0.39)
No. of students	200	180					

Standard Deviation from the following distribution

Age (years)	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$
No of Persons	4	20	38	24	10	4

37. The following table gives the weights of one hundred persons. Compute the coefficient of dispersion

Class-intenal	$\begin{array}{\|c\|} \hline 40-45 \\ \hline 4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 45-50 \\ \hline 13 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 50-55 \\ \hline 8 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 55-60 \\ \hline 14 \\ \hline \end{array}$	$\begin{gathered} 60-65 \\ \hline 9 \end{gathered}$	$\begin{gathered} \hline 65-70 \\ \hline 16 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70-75 \\ \hline 17 \end{array}$	$\begin{gathered} 75-80 \\ \hline 9 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 80-85 \\ \hline 8 \\ \hline \end{array}$	$\frac{85-90}{2}$
						ange	kg	fficien	ran	

38. Calculate standard deviation of the following data:

Age in years(below)	10	20	30	40	50	60	70	80
No. of persons	15	30	53	75	100	110	115	125

Hint: Make above series as continuous and, thereafter, calculate standard deviation. \{Standard deviation $=19.76$ years\}
9. Price of a particular item in 10 years in two cities are given below, which city has more stable prices?

City A	55	54	52	53	56	58	52	50	51	49
City B	108	107	105	105	106	107	104	103	104	101

0. For a distribution, the coefficient of variation is 22.5% and mean is 7.5 . Calculate standard deviation. (Standard deviation = 1.69)
1. Find out the arithmetic mean and standard deviation from the following data

Variable	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$
Frequency	2	9	29	54	11	5
\{Arithmetic mean $=21.05$; Standard deviation $=4.88$ \}						

42. The mean and standard deviation of a series of 20 items are 20 and 5 respectively. While calculating these measures, an item of 13 was wrongly read as 30 . Find out the correct mean and standard deviation.
\{Correct Mean $=19.15 ;$ Standard deviation $=4.66\}$

$$
\text { lie and Isha, in } 10 \text { sets of examinations: }
$$

Marks of obtained by Mollie	44	80	76	48	52	72	68	56	60	54
Marks of obtained by Isha	48	75	54	60	63	69	72	51	57	66

(Coefficient of variation $=50 \%$ \}
In two Towns A and B, daily pocket money and the standard deviations are given below:
45.

In two Town	Average Daily Pocket	Standard Deviation	No. of Teenagers
Town	34.5	5.0	476
A	28.5	4.5	524
B			

(i) Which town, A or B , pays out the larger amount of daily pocket money?
(ii) What is the average daily pocket money of all teenagers taken together?
(iii) Calculate coefficient of variation of each town. Which town is more variable in terms of pocket money?
(iii) Cali) Pocket Money: Town $A=₹ 16,422$; Town $B=₹ 14,934$. Town A pays larger amount of daily pocket money; (ii) Combined Pocket Money = ₹ 31.36 ; (iii) C.V. (Town A) $=14.49 \%$; C.V. (Town B) $=15.79 \%$ Town B is more variable in terms of pocket money as its C.V. is higher

The prices of share of Company X and Company Y are given below. State, which company is more

	25	50	45	30	70	42	36	48	34	60
Company X	25	70	50	20	95	55	42	60	48	80
Company Y	10	70	50							

47. A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively
48. A student obtained the mean and standard deviation of 100 observations 50 instead of 40 . Find the correct mean
It was later found that one observation was wrongly copied as 50 in and standard deviation. \quad (Correct Mean $=39.9 ;$ Standard deviation $=5$ \} It was later found
and standard deviation.
\{Correct Mean $=39.9 ;$ Standard deviation $=5$ \}
49. From the following data, calculate standard deviation of the two groups A and B. Which group is more

50. From the following data of marks, calculate standard deviation. W

Marks Obtained	1	2	3	4	5	6	7	8	9
No, if marks obtained by each student is	2								

(i) Pocket Money: Town $A=₹ 16,422$; Town $B=₹ 14,934$. Town A pays larger amount of dally pocker Town B is more variable in terms of pocket money as its stable?

No. of stu 41

50. From the following data of two workers, identify who is a more consistent worker?

	Worker			
	A	8		
	40	42		
	Worker B is more consistent as his C.V. (14.29%) is less than that of worker 4			

51. Find the standard deviation and coefficient of standard deviation:

X (less than)	10	20	30	40	50	60	70	80
Frequency	12	30	65	107	157	202	222	230

(Standard deviation $=17.26 ;$ Coefficient of Standard deviation $=0.43$]
52. Find mean, standard deviation and coefficient of variation.

Class-interval	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$	$20-24$
Frequency	10	15	20	25	20	10

$\{$ Mean $=12.4 ;$ Standard deviation $=5.85 ;$ C.V. $=47.19 \%$
53. The following table shows the marks obtained by 60 students. Calculate mean and standard deviation.

Marks (more than)	70	60	50	40	30	20
No. of students	7	18	40	40	55	60

Hint: First, convert the given series as ordinary continuous series and then use the step deviation method.
$\{M e a n=51.67$ marks; Standard deviation $=15.13$ makks
54. Calculate standard deviation and coefficient of dispersion from the data below:

Mid-Points	5	15	25	35	45	55	65	75
Frequency	5	8	7	12	28	20	10	10
Hint: Forcoefficient of dispersion								

[^0] to coefficient of standard devialion (Standard deviation $=18.49 ; C . V=41.09 \%$)
55. The following data shows the expected life of two models of T.V.: A and B

Life (No. of years)	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$
Model A	5	16	13	7	5	4
Model B	2	7	12	19	9	1

Which modal has greater uniformity?
(C.V. of Model $A=54.91 \% ;$ C.V. of Model $B=36.21 \%$. Model B has greater uniforfinl

LEARNING OBJECTIVES

MEASURES OF CORRELATION

11.1 INTRODUCTION
11.2 CORRELATION AND CAUSATION
11.3 IMPORTANCE OR SIGNIFICANCE OF CORRELATION
11.4 TYPES OF CORRELATION
11.5 DEGREE OF CORRELATION
11.6 METHODS OF MEASUREMENTS OF CORRELATION
11.7 SCATTER DIAGRAM
11.8 KARL PEARSON'S COEFFICIENT OF CORRELATION
11.9 CALCULATION OF KARL PEARSON'S COEFFICIENT OF CORRELATION
11.10 ASSUMPTIONS OF COEFFICIENT OF CORRELATION
11.11 PROPERTIES OF COEFFICIENT OF CORRELATION
11.12 MERITS AND DEMERITS OF COEFFICIENT OF CORRELATION
11.13 SPEARMAN'S RANK CORRELATION
11.14 COMPUTATION OF RANK CORRELATION
11.15 MERITS AND DEMERITS OF RANK CORRELATION

11.1 INTRODUCTION

\qquad
In the earlier chapters, we have studied the statistical problems and dis dispersion, which are one variable. We discussed various measures of central tendency and dispersiable is known confined to a single variable. This kind of statistical analysis ind as univariate distribution.
But, we may come across a number of situations with distributions having two variables. etample, we may have data relating to income and expenditure, price and demate distribution. Weight, etc. The distribution involving two variab find it there is any relationship between the
In a bivariate distribution, we may be interested to tind t ther there exists certain relationship
two variables under study. In day-to-day life, we obser expenditure price and demand and so on.
etween two variables, like between income and expenditure p two rariables.
${ }^{{ }^{0}}{ }^{\text {rrelation }}$ is a statistical tool which studis the relation

[^0]: Hint: For coefficient of dispersion, calculate coefficient of variation as it is a better measure in comparison

